take 1 xavier part

This commit is contained in:
Pierre-Francois Loos 2020-05-26 12:23:56 +02:00
parent e1a07ff198
commit d5a67a894a
2 changed files with 60 additions and 58 deletions

View File

@ -1,7 +1,7 @@
%% This BibTeX bibliography file was created using BibDesk.
%% http://bibdesk.sourceforge.net/
%% Created for Pierre-Francois Loos at 2020-05-21 09:37:18 +0200
%% Created for Pierre-Francois Loos at 2020-05-26 10:43:21 +0200
%% Saved with string encoding Unicode (UTF-8)
@ -15,7 +15,8 @@
School = {Universit{\'e} Pierre et Marie Curie --- Paris VI},
Title = {Range-Separated Density-Functional Theory for Molecular Excitation Energies},
Url = {https://tel.archives-ouvertes.fr/tel-01027522},
Year = {2014}}
Year = {2014},
Bdsk-Url-1 = {https://tel.archives-ouvertes.fr/tel-01027522}}
@article{Baumeier_2012a,
Author = {Baumeier, Bj\"{o}rn and Andrienko, Denis and Rohlfing, Michael},

View File

@ -309,10 +309,10 @@ can be expressed as a function of the one- and two-body Green's functions
\begin{subequations}
\begin{align}
\label{eq:G1}
G(1,1') & = - i \mel{N}{T \hpsi(1) \hpsi^{\dagger}(1')}{N},
G(1,2) & = - i \mel{N}{T [ \hpsi(1) \hpsi^{\dagger}(2) ] }{N},
\\
\label{eq:G2}
G_2(1,2;1',2') & = - \mel{N}{T \hpsi(1) \hpsi(2) \hpsi^{\dagger}(2') \hpsi^{\dagger}(1')}{N},
G_2(1,2;1',2') & = - \mel{N}{T [ \hpsi(1) \hpsi(2) \hpsi^{\dagger}(2') \hpsi^{\dagger}(1') ]}{N},
\end{align}
\end{subequations}
and
@ -331,17 +331,17 @@ In the optical limit of instantaneous electron-hole creation and destruction, im
\begin{equation}
\begin{split}
iL(1,2; 1',2')
& = \theta(+t_{12}) \sum_{s > 0} \chi_s(\bx_1,\bx_{1'}) \tchi_s(\bx_2,\bx_{2'}) e^{ - i \Oms t_{12} }
& = \theta(+\tau_{12}) \sum_{s > 0} \chi_s(\bx_1,\bx_{1'}) \tchi_s(\bx_2,\bx_{2'}) e^{ - i \Oms \tau_{12} }
\\
& - \theta(-t_{12}) \sum_{s > 0} \chi_s(\bx_2,\bx_{2'}) \tchi_s(\bx_1,\bx_{1'}) e^{ + i \Oms t_{12} },
& - \theta(-\tau_{12}) \sum_{s > 0} \chi_s(\bx_2,\bx_{2'}) \tchi_s(\bx_1,\bx_{1'}) e^{ + i \Oms \tau_{12} },
\end{split}
\end{equation}
where $t_{12} = t_1 - t_2$, $\theta$ is the Heaviside step function, and
where $\tau_{12} = t_1 - t_2$, $\theta$ is the Heaviside step function, and
\begin{subequations}
\begin{align}
\chi_s(\bx_1,\bx_{2}) & = \mel{N}{T \hpsi(\bx_1) \hpsi^{\dagger}(\bx_{2})}{N,s},
\chi_s(\bx_1,\bx_{2}) & = \mel{N}{T [\hpsi(\bx_1) \hpsi^{\dagger}(\bx_{2})] }{N,s},
\\
\tchi_s(\bx_1,\bx_{2}) & = \mel{N,s}{T \hpsi(\bx_1) \hpsi^{\dagger}(\bx_{2})}{N}.
\tchi_s(\bx_1,\bx_{2}) & = \mel{N,s}{T [\hpsi(\bx_1) \hpsi^{\dagger}(\bx_{2})] }{N}.
\end{align}
\end{subequations}
The $\Oms$'s are the neutral excitation energies of interest.
@ -349,100 +349,101 @@ The $\Oms$'s are the neutral excitation energies of interest.
Picking up the $e^{+i \Oms t_2 }$ component in $L(1,2; 1',2')$ and $L(6,2;5,2')$, simplifying further by $\tchi_s(\bx_2,\bx_{2'})$ on both side of the BSE [see Eq.~\eqref{eq:BSE}], we are left with the search of the $e^{-i \Oms t_1 }$ Fourier component associated with the right-hand side of the modified dynamical BSE:
\begin{multline} \label{eq:BSE_2}
\mel{N}{T \hpsi(\bx_1) \hpsi^{\dagger}(\bx_{1}')}{N,s} e^{ - i \Oms t_1 }
\theta ( t_{12} )
\theta ( \tau_{12} )
\\
= \int d3456 \, L_0(1,4;1',3) \Xi(3,5;4,6)
\\
\times \mel{N}{T \hpsi(6) \hpsi^{\dagger}(5)}{N,s}
\times \mel{N}{T [\hpsi(6) \hpsi^{\dagger}(5)] }{N,s}
\theta [\min(t_5,t_6) - t_2].
\end{multline}
For the lowest neutral excitation energies falling in the fundamental gap of the system (\ie, $\Oms < \EgFun$), $L_0(1,2;1',2')$ cannot contribute to the $e^{-i \Oms t_1 }$ response due to excitonic effects since its lowest excitation energy is precisely the fundamental gap [see Eq.~\eqref{eq:Egfun}].
\titou{T2: Xavier, should we mention the consequences of this more explicitly?}
Consequently, special care has to be taken for high-lying excited states (like core or Rydberg excitations) where additional terms have to be taken into account (see Refs.~\onlinecite{Strinati_1982,Strinati_1984}).
Dropping the (space/spin) variables, the Fourier components with respect to $t_1$ of $L_0(1,4;1',3)$ reads
\begin{align} \label{eq:iL0}
[iL_0]( \omega_1 )
= \int \frac{d\omega}{2\pi} \; G\qty(\omega - \frac{\omega_1}{2} ) G\qty( {\omega} + \frac{\omega_1}{2} )
e^{ i \omega t_{34} } e^{ i \omega_1 t^{34} }
e^{ i \omega \tau_{34} } e^{ i \omega_1 \tau^{34} },
\end{align}
with $t_{34} = t_3 - t_4$ and $t^{34} = (t_3 + t_4)/2$.
with $\tau_{34} = t_3 - t_4$ and $\tau^{34} = (t_3 + t_4)/2$.
We now adopt the Lehman representation of the one-body Green's function in the quasiparticle approximation, \ie,
\begin{equation} \label{eq:G-Lehman}
G(\bx_1,\bx_2 ; \omega) = \sum_p \frac{ \phi_p(\bx_1) \phi_p^*(\bx_2) } { \omega - \e{p} + i \eta \times \text{sgn} (\e{p} - \mu) }
G(\bx_1,\bx_2 ; \omega) = \sum_p \frac{ \phi_p(\bx_1) \phi_p^*(\bx_2) } { \omega - \e{p} + i \eta \times \text{sgn} (\e{p} - \mu) },
\end{equation}
where $\mu$ is the chemical potential.
The set $\e{p}$'s in Eq.~\eqref{eq:G-Lehman} are quasiparticle energies and the $\phi_p$'s are their associated one-body (spin)orbitals.
The $\e{p}$'s in Eq.~\eqref{eq:G-Lehman} are quasiparticle energies (\ie, proper addition/removal energies) and the $\phi_p$'s are their associated one-body (spin)orbitals.
%where the $\eps_{p}$'s are proper addition/removal energies such that
%\begin{equation}
% e^{i \hH \tau} \ha_p^{\dagger} \ket{N} = e^{ i (E_0^N + \e{p} ) \tau } \ha_p^{\dagger} \ket{N},
%\end{equation}
%$\hH$ being the exact many-body Hamiltonian.
In the following, $i$ and $j$ are occupied orbitals, $a$ and $b$ are unoccupied orbitals, while $p$, $q$, $r$, and $s$ indicate arbitrary orbitals.
%\titou{namely $GW$ quasiparticle energies and input Hartree-Fock molecular orbitals in the present study. (T2: shall we really mention this here?)}
After projecting onto $\phi_a^*(\bx_1) \phi_i(\bx_{1'})$, one gets
Projecting $L_0(1,4;1',3)$ onto $\phi_a^*(\bx_1) \phi_i(\bx_{1'})$ yields
\begin{multline}
\int d\bx_1 d\bx_{1'} \; \phi_a^*(\bx_1) \phi_i(\bx_{1'}) L_0(\bx_1,3;\bx_{1'},4; \Oms)
\int d\bx_1 d\bx_{1'} \; \phi_a^*(\bx_1) \phi_i(\bx_{1'}) L_0(\bx_1,4;\bx_{1'},3; \Oms)
\\
=
\frac{ \phi_a^*(\bx_3) \phi_i(\bx_4) e^{i \Oms t^{34} }} { \Oms - ( \e{a} - \e{i} ) + i \eta }
\qty[ \theta( \tau ) e^{i ( \e{i} + \hOms) \tau } + \theta( - \tau ) e^{i (\e{a} - \hOms \tau) } ]
\frac{ \phi_a^*(\bx_3) \phi_i(\bx_4) e^{i \Oms t^{34} }} { \Oms - ( \e{a} - \e{i} ) + i \eta }
\qty[ \theta( \tau_{34} ) e^{i ( \e{i} + \hOms) \tau_{34} } + \theta( - \tau_{34} ) e^{i (\e{a} - \hOms \tau_{34}) } ].
\end{multline}
with $\tau = t_{34}$.
\titou{T2: I think 3 and 4 have been swapped in the previous equation.}
% and $(i,j)$/$(a,b)$ index occupied/virtual orbitals, respectively.
Adopting now the $GW$ approximation for the exchange-correlation self-energy, \ie,
\begin{equation}
\Sigma_\text{xc}^{\GW}(1,2) = i G(1,2) W(1^+,2),
\end{equation}
leads to the following simplified BSE kernel
\begin{equation}
\Xi(3,5;4,6) = v(3,6) \delta(3,4) \delta(5,6) - W(3^+,4) \delta(3,6) \delta(4,5),
\end{equation}
where $W$ is its dynamically-screened Coulomb operator.
\titou{T2: shall we introduce the GW approximation later on?}
As a final step, we express the terms $\mel{N}{T \hpsi(\bx_1) \hpsi^{\dagger}(\bx_{1}')}{N,s}$ and $\mel{N}{T \hpsi(6) \hpsi^{\dagger}(5)}{N,s}$ from Eq.~\eqref{eq:BSE_2} in the standard electron-hole product (or single-excitation) space.
As a final step, we express the terms $\mel{N}{T [\hpsi(\bx_1) \hpsi^{\dagger}(\bx_{1}')] }{N,s}$ and $\mel{N}{T [\hpsi(6) \hpsi^{\dagger}(5)] }{N,s}$ from Eq.~\eqref{eq:BSE_2} in the standard electron-hole product (or single-excitation) space.
% with $(6,5) \rightarrow (5,5) \; \text{or} \; (3,4)$ when multiplied by $\delta(5,6)$ or $\delta(3,6) \delta(4,5)$, respectively.
This is done by expanding the field operators over a complete orbital basis of creation/destruction operators.
For example, we have
\begin{multline}
\mel{N}{T \hpsi(3) \hpsi^{\dagger}(4)}{N,s}
\mel{N}{T [\hpsi(3) \hpsi^{\dagger}(4)] }{N,s}
\\
= - \qty( e^{ -i \Omega_s t^{34} } ) \sum_{pq} \phi_p(\bx_3) \phi_q^*(\bx_4)
\mel{N}{\ha_q^{\dagger} \ha_p}{N,s}
\\
\times \qty[ \theta( t_{34} ) e^{- i ( \e{p} - \hOms ) t_{34} } + \theta( - t_{34} ) e^{ - i ( \e{q} + \hOms) t_{34} } ],
\end{multline}
where the $ \lbrace \eps_{p/q} \rbrace$ are proper addition/removal energies \titou{(T2: shall it be mentioned earlier around Eq. (14)?)} such that
with a similar expression for $\mel{N}{T [\hpsi(\bx_3) \hpsi^{\dagger}(\bx_4)] }{N,s}$.
Adopting now the $GW$ approximation for the exchange-correlation self-energy, \ie,
\begin{equation}
e^{i \hH \tau} \ha_p^{\dagger} \ket{N} = e^{ i (E_0^N + \e{p} ) \tau } \ha_p^{\dagger} \ket{N},
\Sigma_\text{xc}^{\GW}(1,2) = i G(1,2) W(1^+,2),
\end{equation}
$\hH$ being the exact many-body Hamiltonian.
The $GW$ quasiparticle energies $\eGW{i/a}$ are good approximations to such removal/addition energies.
Selecting $(p,q)=(j,b)$ yields the largest components
$X_{jb}^{s} = \mel{N}{\ha_j^{\dagger} \ha_b}{N,s}$, while $(p,q)=(b,j)$ yields much weaker
$Y_{jb}^{s} = \mel{N}{\ha_b^{\dagger} \ha_j}{N,s}$ contributions.
Neglecting the $Y_{jb}^{s}$ weights leads to the Tamm-Dancoff approximation (TDA).
Working out the same expansion for $\mel{N}{T \hpsi(5) \hpsi^{\dagger}(5)}{N,s}$ and $\mel{N}{T \hpsi(\bx_1) \hpsi^{\dagger}(\bx_{1'})}{N,s}$ \titou{(where do we need these terms?)}, and projecting onto $\phi_a^*(\bx_1) \phi_i(\bx_{1'})$, one obtains after a few tedious manipulations (see {\SI}) the dynamical Bethe-Salpeter equation (dBSE):
\begin{equation}
leads to the following simplified BSE kernel
\begin{equation} \label{eq:Xi_GW}
\Xi(3,5;4,6) = v(3,6) \delta(3,4) \delta(5,6) - W(3^+,4) \delta(3,6) \delta(4,5),
\end{equation}
where $W$ is the dynamically-screened Coulomb operator.
The $GW$ quasiparticle energies $\eGW{p}$ are good approximations to the removal/addition energies $\e{p}$ introduced in Eq.~\eqref{eq:G-Lehman}.
%Selecting $(p,q)=(j,b)$ yields the largest components
%$X_{jb}^{s} = \mel{N}{\ha_j^{\dagger} \ha_b}{N,s}$, while $(p,q)=(b,j)$ yields much weaker
%$Y_{jb}^{s} = \mel{N}{\ha_b^{\dagger} \ha_j}{N,s}$ contributions.
%Neglecting the $Y_{jb}^{s}$ weights leads to the Tamm-Dancoff approximation (TDA).
%Working out similar expressions for $\mel{N}{T [\hpsi(5) \hpsi^{\dagger}(5)] }{N,s}$ and $\mel{N}{T [\hpsi(\bx_1) \hpsi^{\dagger}(\bx_{1'})] }{N,s}$,
Substituting Eq.~\eqref{eq:Xi_GW} into Eq.~\eqref{eq:BSE_2}, working out similar expressions for the remaining terms, and projecting onto $\phi_a^*(\bx_1) \phi_i(\bx_{1'})$, one gets after a few tedious manipulations (see {\SI}) the dynamical Bethe-Salpeter equation (dBSE):
\begin{equation} \label{eq:BSE-final}
\begin{split}
( \e{a} - \e{i} - \Oms ) X_{ia}^{s}
& + \sum_{jb} \qty[ v_{ai,bj} - \widetilde{W}_{ij,ab}(\Oms) ] X_{jb}^{s} \\
& + \sum_{jb} \qty[ v_{ai,jb} - \widetilde{W}_{ib,aj}(\Oms) ] Y_{jb}^{s}
( \eGW{a} - \eGW{i} - \Oms ) X_{ia}^{s}
& + \sum_{jb} \qty[ (ia|jb) - \widetilde{W}_{ij,ab}(\Oms) ] X_{jb}^{s} \\
& + \sum_{jb} \qty[ (ia|bj) - \widetilde{W}_{ib,aj}(\Oms) ] Y_{jb}^{s}
= 0
\end{split}
\end{equation}
with an effective dynamically-screened Coulomb potential \cite{Romaniello_2009b}
with
\begin{equation}
(pq|rs) = \int d\br d\br' \, \phi_p^*(\br) \phi_q(\br) v(\br -\br') \phi_r^*(\br') \phi_s(\br'),
\end{equation}
and an effective dynamically-screened Coulomb potential \cite{Romaniello_2009b}
\begin{multline}
\widetilde{W}_{ij,ab}(\Oms)
= \frac{ i }{ 2 \pi} \int d\omega \; e^{-i \omega 0^+ } W_{ij,ab}(\omega)
\\
\times \qty[ \frac{1}{ \Omega_{ib}^s - \omega + i \eta } + \frac{1}{ \Omega_{ja}^{s} + \omega + i\eta } ]
\times \qty[ \frac{1}{ \Omega_{ib}^s - \omega + i \eta } + \frac{1}{ \Omega_{ja}^{s} + \omega + i\eta } ],
\end{multline}
where $\Om{ib}{s} = \Oms - ( \e{b} - \e{i} )$ and $\Om{ja}{s} = \Oms - ( \e{a} - \e{j} )$.
Following Mulliken's notations, the Coulomb matrix elements are defined as
\begin{align}
v_{ai,bj}
& = \int d\br d\br' \; \phi_a(\br) \phi_i^*(\br) v(\br -\br') \phi_b^*(\br') \phi_j(\br'),
\\
where $\Om{ib}{s} = \Oms - ( \eGW{b} - \eGW{i} )$, $\Om{ja}{s} = \Oms - ( \eGW{a} - \eGW{j} )$, and
\begin{equation}
W_{ij,ab}({\omega})
& = \int d\br d\br' \; \phi_i(\br) \phi_j^*(\br) W(\br ,\br'; \omega) \phi_a^*(\br') \phi_b(\br'),
\end{align}
where we group together the indices of orbitals taken at the same space position, taking further as inner indices those associated with orbitals with complex conjugation.
= \int d\br d\br' \, \phi_i(\br) \phi_j^*(\br) W(\br ,\br'; \omega) \phi_a^*(\br') \phi_b(\br'),
\end{equation}
Neglecting the terms $Y_{jb}^{s}$ in Eq.~\eqref{eq:BSE-final} leads to the well-known Tamm-Dancoff approximation (TDA).
\xavier{A second coupled equation for the $(X_{ia}^{s}, Y_{ia}^{s} )$ vector can be obtained by projecting now onto the $\mel{N}{T \hpsi(\bx_1) \hpsi^{\dagger}(\bx_{1'})}{N,s}$ left-hand side and right-hand-side of the BSE, leading to : }