From cf9abd7f38b618c7684fbd32a430974fe18beff5 Mon Sep 17 00:00:00 2001 From: Pierre-Francois Loos Date: Mon, 25 May 2020 15:55:16 +0200 Subject: [PATCH] blush again --- BSEdyn.tex | 5 ++--- 1 file changed, 2 insertions(+), 3 deletions(-) diff --git a/BSEdyn.tex b/BSEdyn.tex index fecf766..040112b 100644 --- a/BSEdyn.tex +++ b/BSEdyn.tex @@ -368,9 +368,8 @@ After projecting onto \titou{$\phi_a^*(\bx_1) \phi_i(\bx_{1'})$}, one obtains th \frac{ \phi_a^*(\bx_3) \phi_i(\bx_4) } { \Oms - ( \e{a} - \e{i} ) + i \eta } \times \qty[ \theta( \tau ) e^{i ( \e{i} + \hOms) \tau } + \theta( - \tau ) e^{i (\e{a} - \hOms \tau) } ] \end{multline} -with $\tau = \tau_{34}$. -and where we adopt the iWe used chemist notations with $(i,j)$ indexing occupied orbitals and $(a,b)$ virtual ones. (T2: I wouldn't call that chemist notations...)} - +with $\tau = \tau_{34}$. From then on, + $(i,j)$ index occupied orbitals and $(a,b)$ virtual ones. Adopting now the $GW$ approximation for the exchange-correlation self-energy, \ie, \begin{equation} \Sigma_\text{xc}^{\GW}(1,2) = i G(1,2) W(1^+,2),