Appendix A
This commit is contained in:
parent
ea1a560db3
commit
af260266f8
37
BSEdyn.tex
37
BSEdyn.tex
@ -1143,28 +1143,27 @@ The data that support the findings of this study are available within the articl
|
|||||||
|
|
||||||
\appendix
|
\appendix
|
||||||
|
|
||||||
\section{$L_0(1,4; 1',3)$ $(t_1)$-time Fourier transform}
|
\section{Fourier transform of $L_0(1,4; 1',3)$}
|
||||||
\label{app:A}
|
\label{app:A}
|
||||||
|
|
||||||
In this Appendix, we derive Eqs.~\eqref{eq:iL0} to \eqref{eq:iL0bis}.
|
In this Appendix, we derive Eqs.~\eqref{eq:iL0} to \eqref{eq:iL0bis}.
|
||||||
Defining the $t_1$-time Fourier transform of $L_0(1,3;4,1')$ with
|
Combining the Fourier transform (with respect to $t_1$) of $L_0(1,3;4,1')$
|
||||||
$(t_{1'} = t_1^{+})$
|
|
||||||
\begin{align}
|
\begin{align}
|
||||||
[L_0](\bx_1,4;\bx_{1'},3 \; | \; \omega_1 ) = -i
|
[L_0](\bx_1,4;\bx_{1'},3 \; | \; \omega_1 )
|
||||||
\int dt_1 e^{i \omega_1 t_1 } G(1,3)G(4,1')
|
= -i \int dt_1 e^{i \omega_1 t_1 } G(1,3)G(4,1'),
|
||||||
\end{align}
|
\end{align}
|
||||||
we plug-in the Fourier expansion of the Green's function, e.g.
|
(where $t_{1'} = t_1^{+}$) with the Fourier expansion of the Green's function, \eg,
|
||||||
\begin{align*}
|
\begin{align}
|
||||||
G(1,3) = \int \frac{ d\omega }{ 2\pi } G(\bx_1,\bx_3;\omega) e^{-i \omega \tau_{13} }
|
G(1,3) = \int \frac{ d\omega }{ 2\pi } G(\bx_1,\bx_3;\omega) e^{-i \omega \tau_{13} },
|
||||||
\end{align*}
|
\end{align}
|
||||||
with $\tau_{13} = (t_1-t_3)$ to obtain:
|
(where $\tau_{13} = t_1-t_3$), we obtain
|
||||||
\begin{multline}
|
\begin{multline}
|
||||||
[L_0](\bx_1,4;\bx_{1'},3 \;| \; \omega_1 ) =
|
[L_0](\bx_1,4;\bx_{1'},3 \;| \; \omega_1 ) =
|
||||||
\\
|
\\
|
||||||
\int \frac{ d\omega }{ 2i\pi } \; G(\bx_1,\bx_3;\omega) \; G(\bx_4,\bx_{1'};\omega-\omega_1)
|
\int \frac{ d\omega }{ 2i\pi } \; G(\bx_1,\bx_3;\omega) \; G(\bx_4,\bx_{1'};\omega-\omega_1)
|
||||||
e^{ i \omega t_3 } e^{-i (\omega-\omega_1) t_4 } \nonumber
|
e^{ i \omega t_3 } e^{-i (\omega-\omega_1) t_4 }.
|
||||||
\end{multline}
|
\end{multline}
|
||||||
With the change of variable $\omega \to \omega + {\omega_1}/2$ one obtains readily
|
Applying the change of variable $\omega \ra \omega + \omega_1/2$, one gets
|
||||||
\begin{multline}
|
\begin{multline}
|
||||||
[L_0](\bx_1,4;\bx_{1'},3 \; | \; \omega_1 ) =
|
[L_0](\bx_1,4;\bx_{1'},3 \; | \; \omega_1 ) =
|
||||||
\\
|
\\
|
||||||
@ -1173,8 +1172,8 @@ With the change of variable $\omega \to \omega + {\omega_1}/2$ one obtains readi
|
|||||||
e^{ i \omega \tau_{34} }
|
e^{ i \omega \tau_{34} }
|
||||||
\end{multline}
|
\end{multline}
|
||||||
with $\tau_{34} = t_3 - t_4$ and $t^{34}= (t_3+t_4)/2$.
|
with $\tau_{34} = t_3 - t_4$ and $t^{34}= (t_3+t_4)/2$.
|
||||||
Using now the Lehman representation of the Green's functions (Eq.~\eqref{eq:G-Lehman}), and picking up the poles associated with the occupied (virtual) states in the upper (lower) half-plane for $\tau_{34} > 0$ ($\tau_{34} < 0$), one obtains using the residue theorem (with $\tau = \tau_{34})$
|
Finally, using the Lehman representation of the Green's functions [see Eq.~\eqref{eq:G-Lehman}], and picking up the poles associated with the occupied (virtual) states in the upper (lower) half-plane for $\tau_{34} > 0$ ($\tau_{34} < 0$), one obtains, using the residue theorem,
|
||||||
\begin{equation}
|
\begin{equation} \label{eq:A}
|
||||||
\begin{split}
|
\begin{split}
|
||||||
& \int \frac{ d \omega }{2i\pi} \; G\qty(\bx_1,\bx_3; \omega + \homu ) G\qty(\bx_4,\bx_{1'}; \omega - \homu ) e^{ i \omega \tau }
|
& \int \frac{ d \omega }{2i\pi} \; G\qty(\bx_1,\bx_3; \omega + \homu ) G\qty(\bx_4,\bx_{1'}; \omega - \homu ) e^{ i \omega \tau }
|
||||||
\\
|
\\
|
||||||
@ -1185,14 +1184,14 @@ With the change of variable $\omega \to \omega + {\omega_1}/2$ one obtains readi
|
|||||||
& - \sum_{bj} \frac{ \phi_j(\bx_1) \phi_j^*(\bx_3) \phi_b(\bx_4) \phi_b^*(\bx_{1'})} { \omega_1 + (\e{b} - \e{j} ) -i\eta }
|
& - \sum_{bj} \frac{ \phi_j(\bx_1) \phi_j^*(\bx_3) \phi_b(\bx_4) \phi_b^*(\bx_{1'})} { \omega_1 + (\e{b} - \e{j} ) -i\eta }
|
||||||
\qty[ \theta(\tau) e^{i ( \e{j} - \homu ) \tau } + \theta(-\tau) e^{i ( \e{b} + \homu ) \tau } ]
|
\qty[ \theta(\tau) e^{i ( \e{j} - \homu ) \tau } + \theta(-\tau) e^{i ( \e{b} + \homu ) \tau } ]
|
||||||
\\
|
\\
|
||||||
& + \sum_{ab} \text{ pp terms } + \sum_{ij} \text{ hh terms }
|
& + \sum_{ab} \text{pp} + \sum_{ij} \text{hh},
|
||||||
\end{split}
|
\end{split}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
where (pp) and (hh) labels particle-particle and hole-hole channels neglected here.
|
with $\tau = \tau_{34}$, and where pp and hh label the particle-particle and hole-hole channels (respectively) that are neglected here. \cite{Strinati_1988}
|
||||||
Projecting onto $\phi_a^*(\bx_1) \phi_i(\bx_{1'})$ selects the first line of the RHS, leading to Eq.~\eqref{eq:iL0bis}
|
Projecting onto $\phi_a^*(\bx_1) \phi_i(\bx_{1'})$ selects the first line of the right-hand-side of Eq.~\eqref{eq:A}, yielding Eq.~\eqref{eq:iL0bis}
|
||||||
with $ (\Om{1}{} \to \Om{s}{} )$.
|
with $\Om{1}{} \to \Om{s}{}$.
|
||||||
|
|
||||||
\section{ $\mel{N}{T [\hpsi(6) \hpsi^{\dagger}(5)] }{N,S}$ in the electron/hole product basis }
|
\section{ $\mel{N}{T [\hpsi(6) \hpsi^{\dagger}(5)] }{N,S}$ in the electron-hole product basis}
|
||||||
\label{app:B}
|
\label{app:B}
|
||||||
|
|
||||||
We now derive in some more details Eq.~\eqref{eq:spectral65}.
|
We now derive in some more details Eq.~\eqref{eq:spectral65}.
|
||||||
|
Loading…
Reference in New Issue
Block a user