Sangalli again
This commit is contained in:
parent
bb02d36819
commit
abaae0f8c0
@ -281,19 +281,19 @@ One can now build the dynamical Bethe-Salpeter equation (dBSE) Hamiltonian, whic
|
||||
\end{equation}
|
||||
with
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
R(\omega) & = \Delta\eGW{} + 2 \sigma \ERI{vc}{cv} - W_R(\omega)
|
||||
\begin{gather}
|
||||
R(\omega) = \Delta\eGW{} + 2 \sigma \ERI{vc}{cv} - W_R(\omega)
|
||||
\\
|
||||
C(\omega) & = 2 \sigma \ERI{vc}{cv} - W_C(\omega)
|
||||
\end{align}
|
||||
C(\omega) = 2 \sigma \ERI{vc}{cv} - W_C(\omega)
|
||||
\end{gather}
|
||||
\end{subequations}
|
||||
($\sigma = 1$ for singlets and $\sigma = 0$ for triplets) and
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
W_R(\omega) & = \ERI{vv}{cc} + \frac{4 \ERI{vv}{vc} \ERI{vc}{cc}}{\omega - \Omega - \Delta\eGW{}}
|
||||
\begin{gather}
|
||||
W_R(\omega) = \ERI{vv}{cc} + \frac{4 \ERI{vv}{vc} \ERI{vc}{cc}}{\omega - \Omega - \Delta\eGW{}}
|
||||
\\
|
||||
W_C(\omega) & = \ERI{vc}{cv} + \frac{4 \ERI{vc}{cv}^2}{\omega - \Omega}
|
||||
\end{align}
|
||||
W_C(\omega) = \ERI{vc}{cv} + \frac{4 \ERI{vc}{cv}^2}{\omega - \Omega}
|
||||
\end{gather}
|
||||
\end{subequations}
|
||||
are the elements of the dynamically-screened Coulomb potential for the resonant and coupling blocks of the dBSE Hamiltonian.
|
||||
It can be easily shown that solving the equation
|
||||
@ -315,11 +315,13 @@ Within the static approximation, the BSE Hamiltonian is
|
||||
\end{pmatrix}
|
||||
\end{equation}
|
||||
with
|
||||
\begin{align}
|
||||
R^{\stat} & = R(\omega = \Delta\eGW{}) = \Delta\eGW{} + 2 \sigma \ERI{vc}{vc} - W_R(\omega = \Delta\eGW{})
|
||||
\begin{subequations}
|
||||
\begin{gather}
|
||||
R^{\stat} = \Delta\eGW{} + 2 \sigma \ERI{vc}{vc} - W_R(\omega = \Delta\eGW{})
|
||||
\\
|
||||
C^{\stat} & = C(\omega = 0) = 2 \sigma \ERI{vc}{vc} - W_C(\omega = 0)
|
||||
\end{align}
|
||||
C^{\stat} = 2 \sigma \ERI{vc}{vc} - W_C(\omega = 0)
|
||||
\end{gather}
|
||||
\end{subequations}
|
||||
In the static approximation, only one pair of solutions (per spin manifold) is obtained by diagonalizing $\bH^{\BSE}$.
|
||||
There are, like in the dynamical case, opposite in sign.
|
||||
Therefore, the static BSE Hamiltonian does not produce spurious excitations but misses the (singlet) double excitation.
|
||||
@ -516,11 +518,13 @@ The static Hamiltonian for this theory is just the usual RPAx (or TDHF) Hamilton
|
||||
\end{pmatrix}
|
||||
\end{equation}
|
||||
with
|
||||
\begin{align}
|
||||
A^{\stat} & = \Delta\eGF{} + 2 \sigma \ERI{vc}{vc} - \ERI{vv}{cc}
|
||||
\begin{subequations}
|
||||
\begin{gather}
|
||||
A^{\stat} = \Delta\eGF{} + 2 \sigma \ERI{vc}{vc} - \ERI{vv}{cc}
|
||||
\\
|
||||
B^{\stat} & = 2 \sigma \ERI{vc}{vc} - \ERI{vc}{cv}
|
||||
\end{align}
|
||||
B^{\stat} = 2 \sigma \ERI{vc}{vc} - \ERI{vc}{cv}
|
||||
\end{gather}
|
||||
\end{subequations}
|
||||
The dynamical part of the kernel for BSE2 (that we will call dRPAx for notational consistency) is a bit ugly but it simplifies greatly in the case of the present model to yield
|
||||
\begin{equation}
|
||||
\bH^{\dRPAx} = \bH^{\RPAx} +
|
||||
@ -531,17 +535,21 @@ The dynamical part of the kernel for BSE2 (that we will call dRPAx for notationa
|
||||
\end{pmatrix}
|
||||
\end{equation}
|
||||
with
|
||||
\begin{align}
|
||||
A^{\updw}(\omega) & = - \frac{4 \ERI{cv}{vv} \ERI{vc}{cc} - \ERI{vc}{cc}^2 - \ERI{cv}{vv}^2 }{\omega - 2 \Delta\eGF{}}
|
||||
\begin{subequations}
|
||||
\begin{gather}
|
||||
A^{\updw}(\omega) = - \frac{4 \ERI{cv}{vv} \ERI{vc}{cc} - \ERI{vc}{cc}^2 - \ERI{cv}{vv}^2 }{\omega - 2 \Delta\eGF{}}
|
||||
\\
|
||||
B^{\updw} & = - \frac{4 \ERI{vc}{cv}^2 - \ERI{cc}{cc} \ERI{vc}{cv} - \ERI{vv}{vv} \ERI{vc}{cv} }{2 \Delta\eGF{}}
|
||||
\end{align}
|
||||
B^{\updw} = - \frac{4 \ERI{vc}{cv}^2 - \ERI{cc}{cc} \ERI{vc}{cv} - \ERI{vv}{vv} \ERI{vc}{cv} }{2 \Delta\eGF{}}
|
||||
\end{gather}
|
||||
\end{subequations}
|
||||
and
|
||||
\begin{align}
|
||||
A^{\upup}(\omega) & = - \frac{ \ERI{vc}{cc}^2 + \ERI{cv}{vv}^2 }{\omega - 2 \Delta\eGF{}}
|
||||
\begin{subequations}
|
||||
\begin{gather}
|
||||
A^{\upup}(\omega) = - \frac{ \ERI{vc}{cc}^2 + \ERI{cv}{vv}^2 }{\omega - 2 \Delta\eGF{}}
|
||||
\\
|
||||
B^{\upup} & = - \frac{\ERI{cc}{cc} \ERI{vc}{cv} + \ERI{vv}{vv} \ERI{vc}{cv} }{2 \Delta\eGF{}}
|
||||
\end{align}
|
||||
B^{\upup} = - \frac{\ERI{cc}{cc} \ERI{vc}{cv} + \ERI{vv}{vv} \ERI{vc}{cv} }{2 \Delta\eGF{}}
|
||||
\end{gather}
|
||||
\end{subequations}
|
||||
Note that the coupling blocks $B$ are frequency independent, as they should.
|
||||
This has an important consequence as this lack of frequency dependence removes one of the spurious pole.
|
||||
The singlet manifold has then the right number of excitations.
|
||||
@ -602,18 +610,22 @@ The dynamical BSE Hamiltonian with Sangalli's kernel is
|
||||
\end{pmatrix}
|
||||
\end{equation}
|
||||
with
|
||||
\begin{align}
|
||||
H_{ia,jb}(\omega) & = \delta_{ij} \delta_{ab} (\eGW{a} - \eGW{i}) + \Xi_{ia,jb} (\omega)
|
||||
\\
|
||||
K_{ia,jb}(\omega) & = \Xi_{ia,bj} (\omega)
|
||||
\end{align}
|
||||
and
|
||||
\begin{subequations}
|
||||
\begin{gather}
|
||||
\Xi_{ia,jb} (\omega) = \sum_{m \neq n} \frac{ C_{ia,mn} C_{jb,mn} }{\omega - ( \omega_{m} + \omega_{n} + 2i\eta)}
|
||||
H_{ia,jb}(\omega) = \delta_{ij} \delta_{ab} (\eGW{a} - \eGW{i}) + \Xi_{ia,jb} (\omega)
|
||||
\\
|
||||
K_{ia,jb}(\omega) = \Xi_{ia,bj} (\omega)
|
||||
\end{gather}
|
||||
\end{subequations}
|
||||
and
|
||||
\begin{subequations}
|
||||
\begin{gather}
|
||||
\Xi_{ia,jb} (\omega) = \sum_{m \neq n} \frac{ C_{ia,mn} C_{jb,mn} }{\omega - ( \omega_{m} + \omega_{n})}
|
||||
\\
|
||||
C_{ia,mn} = \frac{1}{2} \sum_{jb,kc} \qty{ \qty[ \ERI{ij}{kc} \delta_{ab} + \ERI{kc}{ab} \delta_{ij} ] \qty[ R_{m,jc} R_{n,kb}
|
||||
+ R_{m,kb} R_{n,jc} ] }
|
||||
\end{gather}
|
||||
\end{subequations}
|
||||
where $R_{m,ia}$ are the elements of the RPA eigenvectors.
|
||||
Here $i$, $j$, and $k$ are occupied orbitals, $a$, $b$, and $c$ are unoccupied orbitals, and $m$ and $n$ label single excitations.
|
||||
|
||||
@ -624,10 +636,11 @@ For the two-level model, Sangalli's kernel reads
|
||||
K(\omega) & = \Xi_K (\omega)
|
||||
\end{align}
|
||||
|
||||
\begin{align}
|
||||
\Xi_H (\omega) = \sum_{m \neq n} \frac{ C_{ia,mn} C_{jb,mn} }{\omega - ( \omega_{m} + \omega_{n} + 2i\eta)}
|
||||
\end{align}
|
||||
|
||||
\begin{gather}
|
||||
\Xi_H (\omega) = 2 \frac{ [\ERI{vv}{vc} + \ERI{vc}{cc}]^2 }{\omega - 2\omega_1}
|
||||
\\
|
||||
\Xi_C (\omega) = 0
|
||||
\end{gather}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Take-home messages}
|
||||
|
Loading…
Reference in New Issue
Block a user