This commit is contained in:
Pierre-Francois Loos 2020-05-18 20:00:24 +02:00
parent 573330e2b1
commit 9be0f759f7

View File

@ -209,6 +209,33 @@ This is the abstract
\subsection{Theory for physics} \subsection{Theory for physics}
%================================= %=================================
The resolution of the dynamical Bethe-Salpeter equation (dBSE) [Strinati]
\begin{align*}
L(1,2; & 1',2') = L_0(1,2;1',2') + \\
&+ \int d3456 \;
L_0(1,4;1',3) \Xi(3,5;4,6) L(6,2;5,2')
\end{align*}
with:
\begin{align*}
iL(1,2; 1',2') &= -G_2(1,2;1',2') + G(1,1')G(2,2') \\
i^2 G_2(1,2;1',2') &= \langle N | T {\hat \psi}(1) {\hat \psi}(2) {\hat \psi}^{\dagger}(2') {\hat \psi}^{\dagger}(1') | N \rangle
\end{align*}
where e.g. $1 = (x_1,t_1)$ a space-spin plus time variable, starts with the expansion of the 2-body Green's function $G_2$ and response function $L$ over the complete orthonormalized set $ |N,s \rangle $ of the N-electron excited state with $| N \rangle = | N,0 \rangle$ the ground-state. In the optical limit of instantaneous electron-hole creation and destruction, imposing
$t_{2'} = t_2^+$ and $t_{1'} = t_1^+$, one obtains:
\begin{align*}
iL(1,2;1',2') &= \theta(\tau_{12}) \sum_{s > 0} \chi_s(x_1,x_{1'}) {\tilde \chi}_s(x_2,x_{2'})
e^{ +i \Oms \tau_{12} } \\
&- \theta(-\tau_{12}) \sum_{s > 0} \chi_s(x_2,x_{2'}) {\tilde \chi}_s(x_1,x_{1'})
e^{ - i \Oms \tau_{12} }
\end{align*}
with $\tau_{12} = t_1 - t_2$ and
\begin{align*}
\chi_s(x_1,x_{1'}) = \langle N | T {\hat \psi}(x_1) {\hat \psi}^{\dagger}(x_{1'}) | N,s \rangle \\
{\tilde \chi}_s(x_2,x_{2'}) = \langle N,s | T {\hat \psi}(x_2) {\hat \psi}^{\dagger}(x_{2'}) | N \rangle
\end{align*}
The $\Oms$ are the neutral excitation energies of interest. Picking up the $e^{+i \Oms t_2 }$ component and simplifying by ${\tilde \chi}_s(x_2,x_{2'})
e^{ i \Oms t_{2} }$ on both side of the Bethe-Salpeter equation, we are left with the search of the $e^{-i \Oms t_1 }$ Fourier component associated with the right-hand side of the BSE. For the lowest $\Oms$ excitation energies falling in the quasiparticle gap of the system, the $L_0(1,2;1',2')$ term cannot contribute since its lowest excitation energy is precisely the quasiparticle gap, namely the difference between the electronic affinity and the ionisation potential.
The Fourier components with respect to time $t_1$ of $iL_0(1, 4; 1', 3) = G(1, 3)G(4, 1')$ reads, dropping the (space/spin)-variables: The Fourier components with respect to time $t_1$ of $iL_0(1, 4; 1', 3) = G(1, 3)G(4, 1')$ reads, dropping the (space/spin)-variables:
\begin{align*} \begin{align*}
[iL_0]( \omega_1 ) = \frac{ 1 }{ 2\pi } \int d \omega \; G(\omega - \frac{\omega_1}{2} ) G( {\omega} + \frac{\omega_1}{2} ) e^{ i \omega \tau_{34} } e^{ i \omega_1 t^{34} } [iL_0]( \omega_1 ) = \frac{ 1 }{ 2\pi } \int d \omega \; G(\omega - \frac{\omega_1}{2} ) G( {\omega} + \frac{\omega_1}{2} ) e^{ i \omega \tau_{34} } e^{ i \omega_1 t^{34} }
@ -225,23 +252,25 @@ and projecting on $\phi_a^*(x_1) \phi_i(x_{1'})$, one obtains the $\omega_1= \Om
\Big( \theta( \tau ) e^{i ( \vari + \hOms) \tau } \Big( \theta( \tau ) e^{i ( \vari + \hOms) \tau }
+ \theta( - \tau ) e^{i (\vara - \hOms \tau } \Big) + \theta( - \tau ) e^{i (\vara - \hOms \tau } \Big)
\end{align*} \end{align*}
with $\tau = \tau_{34}$. with $\tau = \tau_{34}$. Adopting now the $GW$ approximation for the exchange-correlation self-energy leads to a simplification of the BSE kernel:
We further obtain the spectral representation of $$
\Xi(3,5;4,6) = v(3,6) \delta(34) \delta(56) - W(3^+,4) \delta(36) \delta(45)
$$
We further obtain the needed spectral representation of
$\langle N | T {\hat \psi}(3) {\hat \psi}^{\dagger}(4) | N,s \rangle$ $\langle N | T {\hat \psi}(3) {\hat \psi}^{\dagger}(4) | N,s \rangle$
expanding the field operators over a complete orbital basis creation/destruction operators: expanding the field operators over a complete orbital basis creation/destruction operators:
\begin{align*} \begin{align*}
\langle N | T {\hat \psi}(3) {\hat \psi}^{\dagger}(4) & | N,s \rangle = - \Big( e^{ -i \Omega_s t^{34} } \Big) \sum_{mn} \phi_m(x_3) \phi_n^*(x_4) \langle N | {\hat a}_n^{\dagger} {\hat a}_m | N,s \rangle \times \nonumber \\ \langle N | T {\hat \psi}(3) & {\hat \psi}^{\dagger}(4) | N,s \rangle = - \Big( e^{ -i \Omega_s t^{34} } \Big) \sum_{mn} \phi_m(x_3) \phi_n^*(x_4) \times \nonumber \\
\times & \Big( \theta( \tau ) e^{- i ( \varepsilon_m - \hOms ) \tau } \times & \langle N | {\hat a}_n^{\dagger} {\hat a}_m | N,s \rangle \;\Big[ \theta( \tau ) e^{- i ( \varepsilon_m - \hOms ) \tau } + \theta( -\tau ) e^{ - i ( \varepsilon_n + \hOms) \tau } \Big]
+ \theta( -\tau ) e^{ - i ( \varepsilon_n + \hOms) \tau } \Big)
\end{align*} \end{align*}
with $\tau = \tau_{34}$ and where the $ \lbrace \varepsilon_{n/m} \rbrace$ are proper addition/removal energies such that e.g. with $\tau = \tau_{34}$ and where the $ \lbrace \varepsilon_{n/m} \rbrace$ are proper addition/removal energies such that e.g.
$$ $$
e^{ i H \tau } {\hat a}_m^{\dagger} | N \rangle = e^{ i (E_0^N + \varepsilon_m ) \tau } {\hat a} _m^{\dagger} | N \rangle e^{ i H \tau } {\hat a}_m^{\dagger} | N \rangle = e^{ i (E_0^N + \varepsilon_m ) \tau } {\hat a} _m^{\dagger} | N \rangle
$$ $$
Selecting (n,m)=(j,b) yields the largest components The $GW$ quasiparticle energies $ \varepsilon_{n/m}^{GW}$ are good approximations to such removal/addition energies. Selecting (n,m)=(j,b) yields the largest components
$A_{jb}^{s} = \langle N | {\hat a}_j^{\dagger} {\hat a}_b | N,s \rangle $, while (n,m)=(b,j) yields much weaker $A_{jb}^{s} = \langle N | {\hat a}_j^{\dagger} {\hat a}_b | N,s \rangle $, while (n,m)=(b,j) yields much weaker
$B_{jb}^{s} = \langle N | {\hat a}_b^{\dagger} {\hat a}_j | N,s \rangle $ contributions. We used chemist notations with (i,j) indexing occupied orbitals and (a,b) virtual ones. Neglecting the $B_{jb}^{s}$ leads to the Tamm Dancoff approximation (TDA). Obtaining similarly the spectral representation of $ \langle N | T {\hat \psi}(1) {\hat \psi}^{\dagger}(1') | N,s \rangle$ ($t_{1'} = t_1^{+}$) projected onto $\phi_a^*(x_1) \phi_i(x_{1'})$, $B_{jb}^{s} = \langle N | {\hat a}_b^{\dagger} {\hat a}_j | N,s \rangle $ contributions. We used chemist notations with (i,j) indexing occupied orbitals and (a,b) virtual ones. Neglecting the $B_{jb}^{s}$ weights leads to the Tamm Dancoff approximation (TDA). Working out the same expansion for $ \langle N | T {\hat \psi}(5) {\hat \psi}^{\dagger}(5) | N,s \rangle$ and $ \langle N | T {\hat \psi}(x_1) {\hat \psi}^{\dagger}(x_{1'}) | N,s \rangle$, and projecting onto $\phi_a^*(x_1) \phi_i(x_{1'})$,
one obtains after a few tedious manipulations (see Supplemental Information) the dynamical Bethe-Salpeter equation (DBSE) : one obtains after a few tedious manipulations (see Supplemental Information) the dynamical Bethe-Salpeter equation (dBSE) :
\begin{align} \begin{align}
( \varepsilon_a - \varepsilon_i - \Omega_s ) A_{ia}^{s} ( \varepsilon_a - \varepsilon_i - \Omega_s ) A_{ia}^{s}
&+ \sum_{jb} \Big( v_{ai,bj} - \widetilde{W}_{ij,ab}(\Oms) \Big) A_{jb}^{s} \\ &+ \sum_{jb} \Big( v_{ai,bj} - \widetilde{W}_{ij,ab}(\Oms) \Big) A_{jb}^{s} \\
@ -250,30 +279,29 @@ one obtains after a few tedious manipulations (see Supplemental Information) the
\end{align} \end{align}
with an effective dynamically screened Coulomb potential (see Pina eq. 24): with an effective dynamically screened Coulomb potential (see Pina eq. 24):
\begin{align} \begin{align}
\widetilde{W}_{ij,ab}(\Oms) &= { i \over 2 \pi} \int d\omega \; e^{-i \omega 0^+ } W_{ij,ab}(\omega) \times \\ \widetilde{W}_{ij,ab}(\Oms) &= \frac{ i }{ 2 \pi} \int d\omega \; e^{-i \omega 0^+ } W_{ij,ab}(\omega) \times \\
\hskip 1cm &\times \left[ \frac{1}{ (\Oms - \omega) - ( \varb - \vari ) +i \eta } + \frac{1}{ (\Oms + \omega) - ( \vara - \varj ) + i\eta } \right] \nonumber \hskip 1cm &\times \left[ \frac{1}{ \Omega_{ib}^s - \omega +i \eta } + \frac{1}{ \Omega_{ja}^{s} + \omega + i\eta } \right] \nonumber
\end{align} \end{align}
with $\; \Omega_{ib}^s = \Oms - ( \varb - \vari )$ and $\; \Omega_{ja}^s = \Oms - ( \vara - \varj ).$
In the present study, we use the exact spectral representation of $W(\omega)$ at the RPA level: In the present study, we use the exact spectral representation of $W(\omega)$ at the RPA level:
\begin{align*} \begin{align*}
W_{ij,ab}(\omega) &= (ij|ab) + 2 \sum_m^{OV} [ij|m] [ab|m] \times \\ W_{ij,ab}(\omega) &= (ij|ab) + 2 \sum_m^{OV} [ij|m] [ab|m] \times \\
& \times \Big( \frac{1}{ \omega-\Omega_m^{RPA} + i\eta } - \frac{1}{ \omega + \Omega_m^{RPA} - i\eta } \Big) & \times \Big( \frac{1}{ \omega-\Omega_m^{RPA} + i\eta } - \frac{1}{ \omega + \Omega_m^{RPA} - i\eta } \Big)
\end{align*} \end{align*}
so that ($\Omega_m^{RPA} > 0 $) so that
\begin{align} \begin{align}
\widetilde{W}_{ij,ab}( \Oms ) &= (ij|ab) + 2 \sum_m^{OV} [ij|m] [ab|m] \times \\ \widetilde{W}_{ij,ab}( \Oms ) &= (ij|ab) + 2 \sum_m^{OV} [ij|m] [ab|m] \times \\
& \times \left[ \frac{ 1 }{ \Omega_{ib}^{s} - \Omega_m^{RPA} + i\eta } + \frac{ 1}{ \Omega_{ja}^{s} - \Omega_m^{RPA} + i\eta } & \times \left[ \frac{ 1 }{ \Omega_{ib}^{s} - \Omega_m^{RPA} + i\eta } + \frac{ 1}{ \Omega_{ja}^{s} - \Omega_m^{RPA} + i\eta }
\right] \nonumber \right] \nonumber
\end{align} \end{align}
with e.g. $ \Omega_{ib}^{s} = \Oms - ( \varepsilon_b - \varepsilon_i) $. \textcolor{red}{Due to excitonic effects, the lowest BSE ${\Omega}_1$ excitation energy stands lower than the lowest $\Omega_m^{RPA}$ excitation energy, so that \textcolor{red}{Due to excitonic effects, the lowest BSE ${\Omega}_1$ excitation energy stands lower than the lowest $\Omega_m^{RPA}$ excitation energy, so that
e.g. $( \Omega_{ib}^{s} - \Omega_m^{RPA} )$ is strictly negative and cannot diverge. Further, $\Omega_{ib}^{s}$ and $\Omega_{ja}^{s}$ are necessarily negative for in-gap low lying BSE excitations, such that e.g. $( \Omega_{ib}^{s} - \Omega_m^{RPA} )$ is strictly negative and cannot diverge. Further, $\Omega_{ib}^{s}$ and $\Omega_{ja}^{s}$ are necessarily negative for in-gap low lying BSE excitations, such that e.g.
$$ $$
\left[ \frac{ 1 }{ \Omega_{ib}^{s} - \Omega_m^{RPA} + i\eta } + \frac{ 1}{ \Omega_{ja}^{s} - \Omega_m^{RPA} + i\eta } \left| \frac{ 1 }{ \Omega_{ib}^{s} - \Omega_m^{RPA} } \right|
\right] < \frac{1}{ \Omega_m^{RPA} }
<
\Big( \frac{1}{ \omega-\Omega_m^{RPA} + i\eta } - \frac{1}{ \omega + \Omega_m^{RPA} - i\eta } \Big) < 0
$$ $$
in the limit $(\omega \rightarrow 0)$ of the standard adiabatic BSE . WELL, do we know the sign of This leads to reduced electron-hole screening, namely larger electron-hole stabilising binding energy, as compared to the standard adiabatic BSE, leading to smaller (blue-shifted) excitation energies. }
$[ij|m] [ab|m]$ ?? }
%In order to compute the neutral (optical) excitations of the system and their associated oscillator strengths, the BSE expresses the two-body propagator \cite{Strinati_1988, Martin_2016} %In order to compute the neutral (optical) excitations of the system and their associated oscillator strengths, the BSE expresses the two-body propagator \cite{Strinati_1988, Martin_2016}
%\begin{multline} %\begin{multline}