Initial Overleaf Import
This commit is contained in:
commit
8df8f336cb
132
main.tex
Normal file
132
main.tex
Normal file
@ -0,0 +1,132 @@
|
|||||||
|
\documentclass[journal=jctcce,manuscript=article]{achemso}
|
||||||
|
|
||||||
|
%%\usepackage{natbib}
|
||||||
|
%%\usepackage{notoccite}
|
||||||
|
\usepackage{amsmath}
|
||||||
|
\usepackage{amssymb}
|
||||||
|
\usepackage{graphicx}% Include figure files:q
|
||||||
|
|
||||||
|
\usepackage{dcolumn}% Align table columns on decimal point
|
||||||
|
\usepackage{bm}% bold math
|
||||||
|
\usepackage{longtable}
|
||||||
|
\usepackage[usenames, dvipsnames]{color}
|
||||||
|
\usepackage{subfigure}
|
||||||
|
\usepackage{multirow}
|
||||||
|
\usepackage{dsfont}
|
||||||
|
\usepackage{ulem}
|
||||||
|
\usepackage{xcolor}
|
||||||
|
|
||||||
|
\DeclareMathOperator*{\argmax}{argmax}
|
||||||
|
\DeclareMathOperator*{\argmin}{argmin}
|
||||||
|
|
||||||
|
|
||||||
|
\newcommand\vari{{\varepsilon}_i}
|
||||||
|
\newcommand\vara{{\varepsilon}_a}
|
||||||
|
\newcommand\varj{{\varepsilon}_j}
|
||||||
|
\newcommand\varb{{\varepsilon}_b}
|
||||||
|
\newcommand\varn{{\varepsilon}_n}
|
||||||
|
\newcommand\varm{{\varepsilon}_m}
|
||||||
|
\newcommand\Oms{{\Omega}_s}
|
||||||
|
\newcommand\hOms{\frac{{\Omega}_s}{2}}
|
||||||
|
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
|
||||||
|
\newcommand{\correction}[1]{\textcolor{blue}{#1}}
|
||||||
|
%\definecolor{myblue}{rgb}{0.0, 0.0, 1.0}
|
||||||
|
|
||||||
|
\author{Pierre-Fran\c{c}ois Loos}
|
||||||
|
\email{loos@irsamc.ups-tlse.fr}
|
||||||
|
\affiliation[LCPQ, Toulouse]{Laboratoire de Chimie et Physique Quantiques, Universit\'e de Toulouse, CNRS, UPS, France}
|
||||||
|
|
||||||
|
\author{Xavier Blase}
|
||||||
|
\email{xavier.blase@neel.cnrs.fr}
|
||||||
|
\affiliation[NEEL, Grenoble]{Universit\'e Grenoble Alpes, CNRS, Institut NEEL, F-38042 Grenoble, France}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\title{ Dynamical BSE }
|
||||||
|
|
||||||
|
\date{\today}
|
||||||
|
\begin{document}
|
||||||
|
|
||||||
|
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
\begin{abstract}
|
||||||
|
|
||||||
|
\end{abstract}
|
||||||
|
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
\section{Theory}
|
||||||
|
|
||||||
|
The Fourier components with respect to time $t_1$ of $iL_0(1, 4; 1', 3) = G(1, 3)G(4, 1')$ reads, dropping the (space/spin)-variables:
|
||||||
|
\begin{align*}
|
||||||
|
[iL_0]( \omega_1 ) = \frac{ 1 }{ 2\pi } \int d \omega \; G(\omega - \frac{\omega_1}{2} ) G( {\omega} + \frac{\omega_1}{2} ) e^{ i \omega \tau_{34} } e^{ i \omega_1 t^{34} }
|
||||||
|
\end{align*}
|
||||||
|
with $\tau_{34} = t_3 - t_4$ and
|
||||||
|
$t^{34} = (t_3 + t_4)/2$. Plugging now the 1-body Green's function Lehman representation, e.g.
|
||||||
|
$$
|
||||||
|
G(x_1,x_3 ; \omega) = \sum_n \frac{ \phi_n(x_1) \phi_n^*(x_3) } { \omega - \varepsilon_n + i \eta \text{sgn}(\varepsilon_n - \mu) }
|
||||||
|
$$
|
||||||
|
and projecting on $\phi_a^*(x_1) \phi_i(x_{1'})$, one obtains the $\omega_1= \Oms$ component
|
||||||
|
\begin{align*}
|
||||||
|
\int dx_1 dx_{1'} \; & \phi_a^*(x_1) \phi_i(x_{1'}) L_0(x_1,3;x_{1'},4; \Oms) = e^{i \Oms t^{34} } \times \\
|
||||||
|
& \frac{ \phi_a^*(x_3) \phi_i(x_4) } { \Oms - ( \vara - \vari ) + i \eta }
|
||||||
|
\Big( \theta( \tau ) e^{i ( \vari + \hOms) \tau }
|
||||||
|
+ \theta( - \tau ) e^{i (\vara - \hOms \tau } \Big)
|
||||||
|
\end{align*}
|
||||||
|
with $\tau = \tau_{34}$.
|
||||||
|
We further obtain the spectral representation of
|
||||||
|
$\langle N | T {\hat \psi}(3) {\hat \psi}^{\dagger}(4) | N,s \rangle$
|
||||||
|
expanding the field operators over a complete orbital basis creation/destruction operators:
|
||||||
|
\begin{align*}
|
||||||
|
\langle N | T {\hat \psi}(3) {\hat \psi}^{\dagger}(4) & | N,s \rangle = - \Big( e^{ -i \Omega_s t^{34} } \Big) \sum_{mn} \phi_m(x_3) \phi_n^*(x_4) \langle N | {\hat a}_n^{\dagger} {\hat a}_m | N,s \rangle \times \nonumber \\
|
||||||
|
\times & \Big( \theta( \tau ) e^{- i ( \varepsilon_m - \hOms ) \tau }
|
||||||
|
+ \theta( -\tau ) e^{ - i ( \varepsilon_n + \hOms) \tau } \Big)
|
||||||
|
\end{align*}
|
||||||
|
with $\tau = \tau_{34}$ and where the $ \lbrace \varepsilon_{n/m} \rbrace$ are proper addition/removal energies such that e.g.
|
||||||
|
$$
|
||||||
|
e^{ i H \tau } {\hat a}_m^{\dagger} | N \rangle = e^{ i (E_0^N + \varepsilon_m ) \tau } {\hat a} _m^{\dagger} | N \rangle
|
||||||
|
$$
|
||||||
|
Selecting (n,m)=(j,b) yields the largest components
|
||||||
|
$A_{jb}^{s} = \langle N | {\hat a}_j^{\dagger} {\hat a}_b | N,s \rangle $, while (n,m)=(b,j) yields much weaker
|
||||||
|
$B_{jb}^{s} = \langle N | {\hat a}_b^{\dagger} {\hat a}_j | N,s \rangle $ contributions. We used chemist notations with (i,j) indexing occupied orbitals and (a,b) virtual ones. Neglecting the $B_{jb}^{s}$ leads to the Tamm Dancoff approximation (TDA). Obtaining similarly the spectral representation of $ \langle N | T {\hat \psi}(1) {\hat \psi}^{\dagger}(1') | N,s \rangle$ ($t_{1'} = t_1^{+}$) projected onto $\phi_a^*(x_1) \phi_i(x_{1'})$,
|
||||||
|
one obtains after a few tedious manipulations (see Supplemental Information) the dynamical Bethe-Salpeter equation (DBSE) :
|
||||||
|
\begin{align}
|
||||||
|
( \varepsilon_a - \varepsilon_i - \Omega_s ) A_{ia}^{s}
|
||||||
|
&+ \sum_{jb} \Big( v_{ai,bj} - \widetilde{W}_{ij,ab}(\Oms) \Big) A_{jb}^{s} \\
|
||||||
|
&+ \sum_{bj} \Big( v_{ai,jb} - \widetilde{W}_{ib,aj}(\Oms) \Big) B_{jb}^{s}
|
||||||
|
= 0
|
||||||
|
\end{align}
|
||||||
|
with an effective dynamically screened Coulomb potential (see Pina eq. 24):
|
||||||
|
\begin{align}
|
||||||
|
\widetilde{W}_{ij,ab}(\Oms) &= { i \over 2 \pi} \int d\omega \; e^{-i \omega 0^+ } W_{ij,ab}(\omega) \times \\
|
||||||
|
\hskip 1cm &\times \left[ \frac{1}{ (\Oms - \omega) - ( \varb - \vari ) +i \eta } + \frac{1}{ (\Oms + \omega) - ( \vara - \varj ) + i\eta } \right] \nonumber
|
||||||
|
\end{align}
|
||||||
|
In the present study, we use the exact spectral representation of $W(\omega)$ at the RPA level:
|
||||||
|
\begin{align*}
|
||||||
|
W_{ij,ab}(\omega) &= (ij|ab) + 2 \sum_m^{OV} [ij|m] [ab|m] \times \\
|
||||||
|
& \times \Big( \frac{1}{ \omega-\Omega_m^{RPA} + i\eta } - \frac{1}{ \omega + \Omega_m^{RPA} - i\eta } \Big)
|
||||||
|
\end{align*}
|
||||||
|
so that
|
||||||
|
\begin{align}
|
||||||
|
\widetilde{W}_{ij,ab}( \Oms ) &= (ij|ab) + 2 \sum_m^{OV} [ij|m] [ab|m] \times \\
|
||||||
|
& \times \left[ \frac{ 1 }{ \Omega_{ib}^{s} - \Omega_m^{RPA} + i\eta } + \frac{ 1}{ \Omega_{ja}^{s} - \Omega_m^{RPA} + i\eta }
|
||||||
|
\right] \nonumber
|
||||||
|
\end{align}
|
||||||
|
with e.g. $ \Omega_{ib}^{s} = \Oms - ( \varepsilon_b - \varepsilon_i) $. \textcolor{red}{Due to excitonic effects, the lowest BSE ${\Omega}_1$ excitation energy stands lower than the lowest $\Omega_m^{RPA}$ excitation energy, so that
|
||||||
|
e.g. $( \Omega_{ib}^{s} - \Omega_m^{RPA} )$ is strictly negative and cannot diverge. Further, $\Omega_{ib}^{s}$ and $\Omega_{ja}^{s}$ are necessarily negative for in-gap low lying BSE excitations, such that
|
||||||
|
$$
|
||||||
|
\left[ \frac{ 1 }{ \Omega_{ib}^{s} - \Omega_m^{RPA} + i\eta } + \frac{ 1}{ \Omega_{ja}^{s} - \Omega_m^{RPA} + i\eta }
|
||||||
|
\right]
|
||||||
|
<
|
||||||
|
\Big( \frac{1}{ \omega-\Omega_m^{RPA} + i\eta } - \frac{1}{ \omega + \Omega_m^{RPA} - i\eta } \Big) < 0
|
||||||
|
$$
|
||||||
|
in the limit $(\omega \rightarrow 0)$ of the standard adiabatic BSE . WELL, do we know the sign of
|
||||||
|
$[ij|m] [ab|m]$ ?? }
|
||||||
|
|
||||||
|
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
\end{document}
|
Loading…
Reference in New Issue
Block a user