Appendix B

This commit is contained in:
Pierre-Francois Loos 2020-07-23 10:53:02 +02:00
parent af260266f8
commit 8a211facf4

View File

@ -1134,7 +1134,7 @@ PFL thanks the European Research Council (ERC) under the European Union's Horizo
This work was performed using HPC resources from GENCI-TGCC (Grant No.~2019-A0060801738) and CALMIP (Toulouse) under allocation 2020-18005.
Funding from the \textit{``Centre National de la Recherche Scientifique''} is acknowledged.
This study has been (partially) supported through the EUR grant NanoX No.~ANR-17-EURE-0009 in the framework of the \textit{``Programme des Investissements d'Avenir''.}
\titou{The authors would like to thank Elisa Rebolini for insightful discussions.}
The authors would like to thank Elisa Rebolini, Pina Romaniello, Arjan Berger, and Julien Toulouse for insightful discussions on dynamical kernels.
%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Data availability}
@ -1194,57 +1194,57 @@ with $\Om{1}{} \to \Om{s}{}$.
\section{ $\mel{N}{T [\hpsi(6) \hpsi^{\dagger}(5)] }{N,S}$ in the electron-hole product basis}
\label{app:B}
We now derive in some more details Eq.~\eqref{eq:spectral65}.
We now derive in more details Eq.~\eqref{eq:spectral65}.
Starting with
\begin{equation}
\begin{split}
\mel{N}{T [\hpsi(6) \hpsi^{\dagger}(5)] }{N,S}
& = \theta(+\tau_{65}) \mel{N}{ \hpsi(6) \hpsi^{\dagger}(5) }{N,S}
\\
& - \theta(-\tau_{65}) \mel{N}{ \hpsi^{\dagger}(5) \hpsi(6) }{N,S}
& - \theta(-\tau_{65}) \mel{N}{ \hpsi^{\dagger}(5) \hpsi(6) }{N,S},
\end{split}
\end{equation}
we use the relation between operators in their Heisenberg and Schr\"{o}dinger representations [see Eq.~\eqref{Eisenberg}] to obtain
we employ the relationship between operators in their Heisenberg and Schr\"{o}dinger representations [see Eq.~\eqref{Eisenberg}] to obtain
\begin{equation}
\begin{split}
& \mel{N}{T [\hpsi(6) \hpsi^{\dagger}(5)]}{N,S} = \\
& + \theta(\tau_{65}) \mel{N}{ \hpsi(\bx_6) e^{-i\hH \tau_{65}} \hpsi^{\dagger}(\bx_5) }{N,S} e^{ i E^N_0 t_6 } e^{ - i E^N_S t_5 }
\\
& - \theta(-\tau_{65}) \mel{N}{ \hpsi^{\dagger}(\bx_5) e^{ i\hH \tau_{65}} \hpsi(\bx_6) }{N,S} e^{ i E^N_0 t_5 } e^{ - i E^N_S t_6 }
& - \theta(-\tau_{65}) \mel{N}{ \hpsi^{\dagger}(\bx_5) e^{ i\hH \tau_{65}} \hpsi(\bx_6) }{N,S} e^{ i E^N_0 t_5 } e^{ - i E^N_S t_6 }.
\end{split}
\end{equation}
with $E^N_0$ the $N$-electron ground-state energy and $E^N_S$ the energy of the $S$th excited state $\ket{N,S}$.
Expanding now the field operators with creation/destruction operators in the orbital basis
\begin{subequations}
%with $E^N_0$ the $N$-electron ground-state energy and $E^N_S$ the energy of the $S$th excited state $\ket{N,S}$.
Expanding now the field operators with creation/destruction operators in the orbital basis, \ie,
\begin{align}
\hpsi(\bx_6) & = \sum_p \phi_p(\bx_6) \ha_p
\\
\hpsi^{\dagger}(\bx_5) & = \sum_q \phi_q^{*}(\bx_5) \ha^{\dagger}_q
\hpsi(\bx_6) & = \sum_p \phi_p(\bx_6) \ha_p,
&
\hpsi^{\dagger}(\bx_5) & = \sum_q \phi_q^{*}(\bx_5) \ha^{\dagger}_q,
\end{align}
\end{subequations}
one gets
\begin{equation}
\begin{equation} \label{eq:N65NS}
\begin{split}
\mel{N}{T [\hpsi(6) \hpsi^{\dagger}(5)]}{N,S}
\\
= \sum_{pq} \phi_p(\bx_6) \phi_q^{*}(\bx_5)
[ & \theta(+\tau_{65}) \mel{N}{ \ha_p e^{-i \hH \tau_{65}} \ha^{\dagger}_q }{N,S} e^{ i E^N_0 t_6 } e^{ - i E^N_S t_5 }
\\
- & \theta(-\tau_{65}) \mel{N}{ \ha^{\dagger}_q e^{ i \hH \tau_{65}} \ha_p }{N,S} e^{ i E^N_0 t_5 } e^{ - i E^N_S t_6 } ]
- & \theta(-\tau_{65}) \mel{N}{ \ha^{\dagger}_q e^{ i \hH \tau_{65}} \ha_p }{N,S} e^{ i E^N_0 t_5 } e^{ - i E^N_S t_6 } ].
\end{split}
\end{equation}
We now act on the $N$-electron ground-state with
%We now act on the $N$-electron ground-state wave function with
Substituting the following identities
\begin{subequations}
\begin{align}
e^{+i\hH \tau_{65} } \ha^{\dagger}_p \ket{N} &=
e^{+i \qty( E^N_0 + \e{p} ) \tau_{65} } \ket{N}
e^{+i \qty( E^N_0 + \e{p} ) \tau_{65} } \ket{N},
\\
e^{ -i\hH \tau_{65} } \ha_q \ket{N} &=
e^{-i \qty( E^N_0 - \e{q} ) \tau_{65} } \ket{N}
e^{-i \qty( E^N_0 - \e{q} ) \tau_{65} } \ket{N},
\end{align}
\end{subequations}
where $\lbrace \e{p/q} \rbrace$ are quasiparticle energies, such as the $GW$ ones, namely proper addition/removal energies.
Taking the associated bras that we plug into the orbital product basis expansion of $\mel{N}{T [\hpsi(6) \hpsi^{\dagger}(5)]}{N,S}$ one obtains:
into Eq.~\eqref{eq:N65NS} yields
%where $\lbrace \e{p/q} \rbrace$ are quasiparticle energies, such as the $GW$ ones, namely proper addition/removal energies.
%Taking the associated bras that we plug into the orbital product basis expansion of $\mel{N}{T [\hpsi(6) \hpsi^{\dagger}(5)]}{N,S}$ one obtains:
\begin{equation}
\begin{split}
\mel{N}{T [\hpsi(6) \hpsi^{\dagger}(5)]}{N,S}
@ -1252,11 +1252,10 @@ Taking the associated bras that we plug into the orbital product basis expansio
= \sum_{pq} \phi_p(\bx_6) \phi_q^{*}(\bx_5)
[ & \theta(+ \tau_{65}) \mel{N}{ \ha_p \ha^{\dagger}_q }{N,S} e^{ -i \e{p} \tau_{65} } e^{ - i \Om{S}{} t_5 }
\\
- & \theta(-\tau_{65}) \mel{N}{ \ha^{\dagger}_q \ha_p }{N,S} e^{ -i \e{q} \tau_{65} } e^{ - i \Om{S}{} t_6 } ]
- & \theta(-\tau_{65}) \mel{N}{ \ha^{\dagger}_q \ha_p }{N,S} e^{ -i \e{q} \tau_{65} } e^{ - i \Om{S}{} t_6 } ],
\end{split}
\end{equation}
leading to Eq.~\eqref{eq:spectral65} with $\Om{S}{} = (E^N_S - E^N_0)$, $t_6 = \tau_{65}/2 + t^{65}$ and $t_5 = - \tau_{65}/2 + t^{65}$.
leading to Eq.~\eqref{eq:spectral65} with $\Om{S}{} = E^N_S - E^N_0$, $t_6 = \tau_{65}/2 + t^{65}$, and $t_5 = - \tau_{65}/2 + t^{65}$.
\bibliography{BSEdyn}