saving work: starting results
This commit is contained in:
parent
5df71d2ee2
commit
833bc38596
@ -1,7 +1,7 @@
|
||||
%% This BibTeX bibliography file was created using BibDesk.
|
||||
%% http://bibdesk.sourceforge.net/
|
||||
|
||||
%% Created for Pierre-Francois Loos at 2020-05-19 16:23:54 +0200
|
||||
%% Created for Pierre-Francois Loos at 2020-05-19 17:13:25 +0200
|
||||
|
||||
|
||||
%% Saved with string encoding Unicode (UTF-8)
|
||||
|
51
BSEdyn.tex
51
BSEdyn.tex
@ -67,6 +67,8 @@
|
||||
\newcommand{\RPA}{\text{RPA}}
|
||||
\newcommand{\BSE}{\text{BSE}}
|
||||
\newcommand{\GW}{GW}
|
||||
\newcommand{\stat}{\text{stat}}
|
||||
\newcommand{\dyn}{\text{dyn}}
|
||||
|
||||
% energies
|
||||
\newcommand{\Enuc}{E^\text{nuc}}
|
||||
@ -86,6 +88,7 @@
|
||||
\newcommand{\eevGW}[1]{\epsilon^\text{\evGW}_{#1}}
|
||||
\newcommand{\eGnWn}[2]{\epsilon^\text{\GnWn{#2}}_{#1}}
|
||||
\newcommand{\Om}[2]{\Omega_{#1}^{#2}}
|
||||
\newcommand{\tOm}[2]{\Tilde{\Omega}_{#1}^{#2}}
|
||||
|
||||
% Matrix elements
|
||||
\newcommand{\A}[2]{A_{#1}^{#2}}
|
||||
@ -171,6 +174,9 @@
|
||||
\newcommand{\EgOpt}{\Eg^\text{opt}}
|
||||
\newcommand{\EB}{E_B}
|
||||
|
||||
\newcommand{\pis}{\pi^*}
|
||||
\newcommand{\ra}{\rightarrow}
|
||||
|
||||
\newcommand\vari{{\varepsilon}_i}
|
||||
\newcommand\vara{{\varepsilon}_a}
|
||||
\newcommand\varj{{\varepsilon}_j}
|
||||
@ -583,8 +589,9 @@ This correction can be renormalized by computing, at basically no extra cost, th
|
||||
\end{equation}
|
||||
which finally yields
|
||||
\begin{equation}
|
||||
\Om{m}{} \approx \Om{m}{(0)} + Z_{m} \Om{m}{(1)}.
|
||||
\Om{m}{\text{dyn}} = \Om{m}{\text{stat}} + \Delta\Om{m}{\text{dyn}} = \Om{m}{(0)} + Z_{m} \Om{m}{(1)}.
|
||||
\end{equation}
|
||||
with $\Om{m}{\text{stat}} \equiv \Om{m}{(0)}$ and $\Delta\Om{m}{\text{dyn}} = Z_{m} \Om{m}{(1)}$.
|
||||
This is our final expression.
|
||||
|
||||
%%% FIG 1 %%%
|
||||
@ -618,7 +625,7 @@ Further details about our implementation of {\GOWO} and {\evGW} can be found in
|
||||
As one-electron basis sets, we employ the augmented Dunning family (aug-cc-pVXZ) defined with cartesian Gaussian functions.
|
||||
Finally, the infinitesimal $\eta$ is set to $100$ meV for all calculations.
|
||||
|
||||
For comparison purposes, we employ the theoretical best estimates and geometries of Ref.~\onlinecite{Loos_2018a} from which coupled cluster (CC) excitation energies, namely, CC2 \cite{Christiansen_1995}, CCSD, \cite{Purvis_1982} and CC3, \cite{Christiansen_1995b} are also extracted.
|
||||
For comparison purposes, we employ the theoretical best estimates and geometries of Refs.~\onlinecite{Loos_2018a,Loos_2019,Loos_2020b} from which coupled cluster (CC) excitation energies, namely, CC2 \cite{Christiansen_1995}, CCSD, \cite{Purvis_1982} and CC3, \cite{Christiansen_1995b} are also extracted.
|
||||
All the BSE calculations have been performed with our locally developed $GW$ software, \texttt{QuAcK}, \cite{QuAcK} freely available on \texttt{github}, where the present perturbative correction has been implemented.
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
@ -626,6 +633,46 @@ All the BSE calculations have been performed with our locally developed $GW$ sof
|
||||
\label{sec:resdis}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\begin{table*}
|
||||
\caption{
|
||||
BSE excitation energies for various molecules obtained with the aug-cc-pVTZ basis set.
|
||||
\label{tab:BigTab}
|
||||
}
|
||||
\begin{ruledtabular}
|
||||
\begin{tabular}{lccccccccccc}
|
||||
& & \mc{4}{c}{BSE@{\GOWO}@HF} & \mc{4}{c}{BSE@{\evGW}@HF} \\
|
||||
\cline{4-7} \cline{8-11}
|
||||
Mol. & State & $\Om{m}{\stat}$ & $\Om{m}{\dyn}$ & $\Delta\Om{m}{\dyn}$ & $Z_{m}$
|
||||
& $\Om{m}{\stat}$ & $\Om{m}{\dyn}$ & $\Delta\Om{m}{\dyn}$ & $Z_{m}$ & CC2 & CC3 \\
|
||||
\hline
|
||||
\ce{HCl} & $^1\Pi$(CT)\\
|
||||
\ce{H2O} & \\
|
||||
\ce{N2} & $^1\Pi_g(n \ra \pis)$ \\
|
||||
& $^1\Sigma_u^-(\pi \ra \pis)$ \\
|
||||
& $^1\Delta_u(\pi \ra \pis)$ \\
|
||||
& $^3\Sigma_u^+(\pi \ra \pis)$\\
|
||||
& $^3\Pi_g(n \ra \pis)$ \\
|
||||
& $^3\Delta_u(\pi \ra \pis)$ \\
|
||||
& $^3\Sigma_u^-(\pi \ra \pis)$ \\
|
||||
\ce{CO} & $^1\Pi(n \ra \pis)$ \\
|
||||
& $^1\Sigma^-(\pi \ra \pis)$ \\
|
||||
& $^1\Delta(\pi \ra \pis)$ \\
|
||||
& $^3\Pi(n \ra \pis)$ \\
|
||||
& $^3\Sigma^+(\pi \ra \pis)$\\
|
||||
& $^3\Delta(\pi \ra \pis)$ \\
|
||||
& $^3\Sigma_u^-(\pi \ra \pis)$ \\
|
||||
\ce{HNO} & \\
|
||||
\ce{CH2O} & \\
|
||||
\ce{C2H4} & $^1B_{3u}(\pi \ra 3s)$ \\
|
||||
& $^1B_{1u}(\pi \ra \pis)$ \\
|
||||
& $^1B_{1g}(\pi \ra 3p)$ \\
|
||||
& $^3B_{1u}(\pi \ra \pis)$ \\
|
||||
& $^3B_{3u}(\pi \ra 3s)$ \\
|
||||
& $^3B_{1g}(\pi \ra 3p)$ \\
|
||||
\end{tabular}
|
||||
\end{ruledtabular}
|
||||
\end{table*}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Conclusion}
|
||||
\label{sec:conclusion}
|
||||
|
Loading…
Reference in New Issue
Block a user