saving work
This commit is contained in:
parent
e29daab98c
commit
7b722abe5e
14
BSEdyn.bib
14
BSEdyn.bib
@ -1,13 +1,25 @@
|
|||||||
%% This BibTeX bibliography file was created using BibDesk.
|
%% This BibTeX bibliography file was created using BibDesk.
|
||||||
%% http://bibdesk.sourceforge.net/
|
%% http://bibdesk.sourceforge.net/
|
||||||
|
|
||||||
%% Created for Pierre-Francois Loos at 2020-05-18 22:14:10 +0200
|
%% Created for Pierre-Francois Loos at 2020-05-19 14:00:59 +0200
|
||||||
|
|
||||||
|
|
||||||
%% Saved with string encoding Unicode (UTF-8)
|
%% Saved with string encoding Unicode (UTF-8)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@article{Loos_2018a,
|
||||||
|
Author = {P. F. Loos and A. Scemama and A. Blondel and Y. Garniron and M. Caffarel and D. Jacquemin},
|
||||||
|
Date-Added = {2020-05-19 14:00:54 +0200},
|
||||||
|
Date-Modified = {2020-05-19 14:00:58 +0200},
|
||||||
|
Doi = {10.1021/acs.jctc.8b00406},
|
||||||
|
Journal = {J. Chem. Theory Comput.},
|
||||||
|
Pages = {4360},
|
||||||
|
Title = {A Mountaineering Strategy to Excited States: Highly-Accurate Reference Energies and Benchmarks},
|
||||||
|
Volume = {14},
|
||||||
|
Year = {2018},
|
||||||
|
Bdsk-Url-1 = {https://doi.org/10.1021/acs.jctc.8b00406}}
|
||||||
|
|
||||||
@article{Loos_2020b,
|
@article{Loos_2020b,
|
||||||
Author = {P. F. Loos and F. Lipparini and M. Boggio-Pasqua and A. Scemama and D. Jacquemin},
|
Author = {P. F. Loos and F. Lipparini and M. Boggio-Pasqua and A. Scemama and D. Jacquemin},
|
||||||
Date-Added = {2020-05-18 22:13:24 +0200},
|
Date-Added = {2020-05-18 22:13:24 +0200},
|
||||||
|
49
BSEdyn.tex
49
BSEdyn.tex
@ -235,7 +235,7 @@ Because the excitonic effect corresponds physically to the stabilization implied
|
|||||||
Most of BSE implementations rely on the so-called static approximation, which approximates the dynamical (\ie, frequency-dependent) BSE kernel by its static limit.
|
Most of BSE implementations rely on the so-called static approximation, which approximates the dynamical (\ie, frequency-dependent) BSE kernel by its static limit.
|
||||||
One key consequence of this approximation is that double (and higher) excitations are completely absent from the BSE spectra.
|
One key consequence of this approximation is that double (and higher) excitations are completely absent from the BSE spectra.
|
||||||
Although these double excitations are usually experimentally dark (which means that they usually cannot be observed in photo-absorption spectroscopy), these states play, indirectly, a key role in many photochemistry mechanisms. \cite{Boggio-Pasqua_2007}
|
Although these double excitations are usually experimentally dark (which means that they usually cannot be observed in photo-absorption spectroscopy), these states play, indirectly, a key role in many photochemistry mechanisms. \cite{Boggio-Pasqua_2007}
|
||||||
They are, moreover, a real challenge for high-level computational methods. \cite{Loos_2018,Loos_2019,Loos_2020b}
|
They are, moreover, a real challenge for high-level computational methods. \cite{Loos_2018a,Loos_2019,Loos_2020b}
|
||||||
|
|
||||||
Going beyond the static approximation is tricky and very few groups have dared to take the plunge. \cite{Strinati_1988,Rohlfing_2000,Sottile_2003,Ma_2009,Romaniello_2009b,Sangalli_2011,Huix-Rotllant_2011,Zhang_2013,Rebolini_2016,Olevano_2019,Lettmann_2019}
|
Going beyond the static approximation is tricky and very few groups have dared to take the plunge. \cite{Strinati_1988,Rohlfing_2000,Sottile_2003,Ma_2009,Romaniello_2009b,Sangalli_2011,Huix-Rotllant_2011,Zhang_2013,Rebolini_2016,Olevano_2019,Lettmann_2019}
|
||||||
Nonetheless, it is worth mentioning the seminal work of Strinati, \cite{Strinati_1988} who \titou{bla bla bla.}
|
Nonetheless, it is worth mentioning the seminal work of Strinati, \cite{Strinati_1988} who \titou{bla bla bla.}
|
||||||
@ -387,7 +387,7 @@ This leads to reduced electron-hole screening, namely larger electron-hole stabi
|
|||||||
\subsection{Theory for chemists}
|
\subsection{Theory for chemists}
|
||||||
%=================================
|
%=================================
|
||||||
|
|
||||||
For a closed-shell system in a finite basis, to compute the BSE excitation energies, one must solve the following (non-linear) dynamical (\ie, frequency-dependent) response problem
|
For a closed-shell system in a finite basis, to compute the BSE excitation energies, one must solve the following (non-linear) dynamical (\ie, frequency-dependent) response problem \cite{Strinati_1988}
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\label{eq:LR-dyn}
|
\label{eq:LR-dyn}
|
||||||
\begin{pmatrix}
|
\begin{pmatrix}
|
||||||
@ -406,8 +406,9 @@ For a closed-shell system in a finite basis, to compute the BSE excitation energ
|
|||||||
\bY{m}{}(\omega) \\
|
\bY{m}{}(\omega) \\
|
||||||
\end{pmatrix},
|
\end{pmatrix},
|
||||||
\end{equation}
|
\end{equation}
|
||||||
where the dynamical matrices $\bA{}(\omega)$, $\bB{}(\omega)$, $\bX{}{}(\omega)$, and $\bY{}{}(\omega)$ are all of size $\Nocc \Nvir \times \Nocc \Nvir$ where $\Nocc$ and $\Nvir$ are the number of occupied and virtual orbitals (\ie, $\Norb = \Nocc + \Nvir$ is the total number of spatial orbitals), respectively.
|
where the dynamical matrices $\bA{}(\omega)$ and $\bB{}(\omega)$ are of size $\Nocc \Nvir \times \Nocc \Nvir$, where $\Nocc$ and $\Nvir$ are the number of occupied and virtual orbitals (\ie, $\Norb = \Nocc + \Nvir$ is the total number of spatial orbitals), respectively, and $\bX{m}{}(\omega)$, and $\bY{m}{}(\omega)$ are (eigen)vectors of length $\Nocc \Nvir$.
|
||||||
In the following, the index $m$ labels the $\Nocc \Nvir$ single excitations, $i$ and $j$ are occupied orbitals, $a$ and $b$ are unoccupied orbitals, while $p$, $q$, $r$, and $s$ indicate arbitrary orbitals.
|
In the following, the index $m$ labels the $\Nocc \Nvir$ single excitations, $i$ and $j$ are occupied orbitals, $a$ and $b$ are unoccupied orbitals, while $p$, $q$, $r$, and $s$ indicate arbitrary orbitals.
|
||||||
|
Note that, due to its non-linear nature, Eq.~\eqref{eq:LR-dyn} may provide more than one solution for each value of $m$. \cite{Romaniello_2009b,Sangalli_2011,Martin_2016}
|
||||||
|
|
||||||
The BSE matrix elements read
|
The BSE matrix elements read
|
||||||
\begin{subequations}
|
\begin{subequations}
|
||||||
@ -419,6 +420,7 @@ The BSE matrix elements read
|
|||||||
\B{ia,jb}{}(\omega) & = 2 \ERI{ia}{bj} - \W{ib,aj}{}(\omega),
|
\B{ia,jb}{}(\omega) & = 2 \ERI{ia}{bj} - \W{ib,aj}{}(\omega),
|
||||||
\end{align}
|
\end{align}
|
||||||
\end{subequations}
|
\end{subequations}
|
||||||
|
\titou{singlet and triplet}
|
||||||
where $\eGW{ia} = \eGW{a} - \eGW{i}$ are occupied-to-virtual differences of $GW$ quasiparticle energies,
|
where $\eGW{ia} = \eGW{a} - \eGW{i}$ are occupied-to-virtual differences of $GW$ quasiparticle energies,
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\ERI{pq}{rs} = \iint \frac{\MO{p}(\br{}) \MO{q}(\br{}) \MO{r}(\br{}') \MO{s}(\br{}')}{\abs*{\br{} - \br{}'}} \dbr{} \dbr{}'
|
\ERI{pq}{rs} = \iint \frac{\MO{p}(\br{}) \MO{q}(\br{}) \MO{r}(\br{}') \MO{s}(\br{}')}{\abs*{\br{} - \br{}'}} \dbr{} \dbr{}'
|
||||||
@ -436,7 +438,7 @@ where $\eta$ is a positive infinitesimal, and
|
|||||||
\sERI{pq}{m} = \sum_i^{\Nocc} \sum_a^{\Nvir} \ERI{pq}{ia} (\bX{m}{\RPA} + \bY{m}{\RPA})_{ia}
|
\sERI{pq}{m} = \sum_i^{\Nocc} \sum_a^{\Nvir} \ERI{pq}{ia} (\bX{m}{\RPA} + \bY{m}{\RPA})_{ia}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
are the spectral weights.
|
are the spectral weights.
|
||||||
In Eqs.~\eqref{eq:W} and \eqref{eq:sERI}, $\OmRPA{m}{}$ and $(\bX{m}{\RPA} + \bY{m}{\RPA})$ are direct (\ie, without exchange) RPA neutral excitations and their corresponding transition vectors computed by solving the (linear) static response problem
|
In Eqs.~\eqref{eq:W} and \eqref{eq:sERI}, $\OmRPA{m}{}$ and $(\bX{m}{\RPA} + \bY{m}{\RPA})$ are direct (\ie, without exchange) RPA neutral excitations and their corresponding transition vectors computed by solving the (static) linear response problem
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\label{eq:LR-stat}
|
\label{eq:LR-stat}
|
||||||
\begin{pmatrix}
|
\begin{pmatrix}
|
||||||
@ -465,11 +467,11 @@ with
|
|||||||
\B{ia,jb}{\RPA} & = 2 \ERI{ia}{bj},
|
\B{ia,jb}{\RPA} & = 2 \ERI{ia}{bj},
|
||||||
\end{align}
|
\end{align}
|
||||||
\end{subequations}
|
\end{subequations}
|
||||||
where the $\e{p}$'s are taken as the Hartree-Fock (HF) orbital energies in the case of $G_0W_0$ or as the $GW$ quasiparticle energies in the case of self-consistent scheme such as ev$GW$.
|
where the $\e{p}$'s are taken as the HF orbital energies in the case of $G_0W_0$ or as the $GW$ quasiparticle energies in the case of self-consistent schemes such as ev$GW$.
|
||||||
|
|
||||||
Now, let us decompose, using basis perturbation theory, the eigenproblem \eqref{eq:LR-dyn} as a zeroth-order static part and a first-order dynamic part, such that
|
Now, let us decompose, using basic perturbation theory, the non-linear eigenproblem \eqref{eq:LR-dyn} as a zeroth-order static (hence linear) reference and a first-order dynamic (hence non-linear) perturbation, such that
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\label{eq:LR-dyn}
|
\label{eq:LR-PT}
|
||||||
\begin{pmatrix}
|
\begin{pmatrix}
|
||||||
\bA{}(\omega) & \bB{}(\omega) \\
|
\bA{}(\omega) & \bB{}(\omega) \\
|
||||||
-\bB{}(\omega) & -\bA{}(\omega) \\
|
-\bB{}(\omega) & -\bA{}(\omega) \\
|
||||||
@ -488,20 +490,20 @@ Now, let us decompose, using basis perturbation theory, the eigenproblem \eqref{
|
|||||||
where
|
where
|
||||||
\begin{subequations}
|
\begin{subequations}
|
||||||
\begin{align}
|
\begin{align}
|
||||||
\label{eq:BSE-0}
|
\label{eq:BSE-A0}
|
||||||
\A{ia,jb}{(0)} & = \delta_{ij} \delta_{ab} \eGW{ia} + 2 \ERI{ia}{jb} - \W{ij,ab}{\text{stat}},
|
\A{ia,jb}{(0)} & = \delta_{ij} \delta_{ab} \eGW{ia} + 2 \ERI{ia}{jb} - \W{ij,ab}{\text{stat}},
|
||||||
\\
|
\\
|
||||||
\label{eq:BSE-0}
|
\label{eq:BSE-B0}
|
||||||
\B{ia,jb}{(0)} & = 2 \ERI{ia}{bj} - \W{ib,aj}{\text{stat}},
|
\B{ia,jb}{(0)} & = 2 \ERI{ia}{bj} - \W{ib,aj}{\text{stat}},
|
||||||
\end{align}
|
\end{align}
|
||||||
\end{subequations}
|
\end{subequations}
|
||||||
and
|
and
|
||||||
\begin{subequations}
|
\begin{subequations}
|
||||||
\begin{align}
|
\begin{align}
|
||||||
\label{eq:BSE-1}
|
\label{eq:BSE-A1}
|
||||||
\A{ia,jb}{(1)}(\omega) & = - \W{ij,ab}{}(\omega) + \W{ij,ab}{\text{stat}},
|
\A{ia,jb}{(1)}(\omega) & = - \W{ij,ab}{}(\omega) + \W{ij,ab}{\text{stat}},
|
||||||
\\
|
\\
|
||||||
\label{eq:BSE-1}
|
\label{eq:BSE-B1}
|
||||||
\B{ia,jb}{(1)}(\omega) & = - \W{ib,aj}{}(\omega) + \W{ib,aj}{\text{stat}},
|
\B{ia,jb}{(1)}(\omega) & = - \W{ib,aj}{}(\omega) + \W{ib,aj}{\text{stat}},
|
||||||
\end{align}
|
\end{align}
|
||||||
\end{subequations}
|
\end{subequations}
|
||||||
@ -592,6 +594,31 @@ This is our final expression.
|
|||||||
%\end{figure}
|
%\end{figure}
|
||||||
%%% %%% %%%
|
%%% %%% %%%
|
||||||
|
|
||||||
|
In terms of computational consideration, because Eq.~\eqref{eq:EcBSE} requires the entire BSE singlet excitation spectrum, we perform a complete diagonalization of the $\Nocc \Nvir \times \Nocc \Nvir$ BSE linear response matrix [see Eq.~\eqref{eq:small-LR}], which corresponds to a $\order{\Nocc^3 \Nvir^3} = \order{\Norb^6}$ computational cost.
|
||||||
|
|
||||||
|
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
\section{Computational details}
|
||||||
|
\label{sec:compdet}
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
The restricted HF formalism has been systematically employed in the present study.
|
||||||
|
All the $GW$ calculations performed to obtain the screened Coulomb operator and the quasiparticle energies are done using a (restricted) HF starting point.
|
||||||
|
Perturbative $GW$ (or {\GOWO}) \cite{Hybertsen_1985a, Hybertsen_1986} and partially self-consistent ev$GW$ calculations are employed as starting points to compute the BSE neutral excitations.
|
||||||
|
Within $GW$, all orbitals are corrected.
|
||||||
|
In the case of {\GOWO}, the quasiparticle energies are obtained by linearizing the frequency-dependent quasiparticle equation.
|
||||||
|
For ev$GW$, the convergence creiterion has been set to $10^{-5}$.
|
||||||
|
Further details about our implementation of {\GOWO} and evGW can be found in Refs.~\onlinecite{Loos_2018b,Veril_2018}.
|
||||||
|
Finally, the infinitesimal $\eta$ is set to $100$ meV for all calculations.
|
||||||
|
|
||||||
|
For comparison purposes, we employ the reference excitation energies and geometries from Ref.~\onlinecite{Loos_2018a} also computed the PES at the second-order M{\o}ller-Plesset perturbation theory (MP2), as well as with various increasingly accurate CC methods, namely, CC2 \cite{Christiansen_1995}, CCSD, \cite{Purvis_1982} and CC3. \cite{Christiansen_1995b}
|
||||||
|
All the other calculations have been performed with our locally developed $GW$ software. \cite{Loos_2018b,Veril_2018}
|
||||||
|
As one-electron basis sets, we employ the augmented Dunning family (aug-cc-pVXZ) defined with cartesian Gaussian functions.
|
||||||
|
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
\section{Conclusion}
|
||||||
|
\label{sec:conclusion}
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
This is the conclusion
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
\section{Conclusion}
|
\section{Conclusion}
|
||||||
|
Loading…
Reference in New Issue
Block a user