diff --git a/BSEdyn.tex b/BSEdyn.tex index 2ce37da..4ec3d15 100644 --- a/BSEdyn.tex +++ b/BSEdyn.tex @@ -39,8 +39,8 @@ \newcommand{\T}[1]{#1^{\intercal}} % coordinates -\newcommand{\br}[1]{\mathbf{r}_{#1}} -\newcommand{\dbr}[1]{d\br{#1}} +\newcommand{\br}{\mathbf{r}} +\newcommand{\dbr}{d\br} % methods \newcommand{\evGW}{ev$GW$} @@ -336,7 +336,7 @@ Picking up the $e^{+i \Oms t_2 }$ component in $L(1,2; 1',2')$ and $L(6,2;5,2')$ \titou{For the lowest $\Oms$ excitation energies falling in the quasiparticle gap of the system}, $L_0(1,2;1',2')$ cannot contribute \titou{to?} since its lowest excitation energy is precisely the quasiparticle gap, namely the difference between the electronic affinity and the ionization potential. \titou{T2: I think we should specify at which level of theory this quasiparticle gap is computed. What do you think?} -The Fourier components with respect to $t_1$ of $L_0$ reads, dropping the (space/spin) variables: +The Fourier components with respect to $t_1$ of $L_0$ reads, dropping the (space/spin) variables \begin{align} \label{eq:iL0} [iL_0]( \omega_1 ) = \int \frac{d\omega}{2\pi} \; G\qty(\omega - \frac{\omega_1}{2} ) G\qty( {\omega} + \frac{\omega_1}{2} ) @@ -347,7 +347,9 @@ We now adopt the Lehman representation of the one-body Green's function in the q \begin{equation} G(\bx_1,\bx_2 ; \omega) = \sum_p \frac{ \phi_p(\bx_1) \phi_p^*(\bx_2) } { \omega - \e{p} + i \eta \times \text{sgn} (\e{p} - \mu) } \end{equation} -where the $\lbrace \e{p} \rbrace$ are quasiparticle energies and $\lbrace \phi_p \rbrace$ the associated one-body molecular orbitals, namely $GW$ quasiparticle energies and input Hartree-Fock molecular orbitals in the present study. After projecting onto \titou{$\phi_a^*(\bx_1) \phi_i(\bx_{1'})$}, one obtains the $\omega_1= \Oms$ component +where \titou{$\mu$ is the chemical potential}. +The set $\lbrace \e{p} \rbrace$ are quasiparticle energies and $\lbrace \phi_p \rbrace$ is their associated one-body \titou{(spin)} orbitals, \titou{namely $GW$ quasiparticle energies and input Hartree-Fock molecular orbitals in the present study. (T2: shall we really mention this here?)} +After projecting onto \titou{$\phi_a^*(\bx_1) \phi_i(\bx_{1'})$}, one obtains the $\omega_1= \Oms$ component \begin{multline} \int d\bx_1 d\bx_{1'} \; \phi_a^*(\bx_1) \phi_i(\bx_{1'}) L_0(\bx_1,3;\bx_{1'},4; \Oms) \\ @@ -356,6 +358,7 @@ where the $\lbrace \e{p} \rbrace$ are quasiparticle energies and $\lbrace \phi_ \times \qty[ \theta( \tau ) e^{i ( \e{i} + \hOms) \tau } + \theta( - \tau ) e^{i (\e{a} - \hOms \tau) } ] \end{multline} with $\tau = \tau_{34}$. +\titou{We used chemist notations with $(i,j)$ indexing occupied orbitals and $(a,b)$ virtual ones. (T2: I wouldn't call that chemist notations...)} Adopting now the $GW$ approximation for the exchange-correlation self-energy, \ie, \begin{equation} @@ -366,26 +369,26 @@ leads to the following simplified BSE kernel \Xi(3,5;4,6) = v(3,6) \delta(3,4) \delta(5,6) - W(3^+,4) \delta(3,6) \delta(4,5), \end{equation} where $W$ is its dynamically-screened Coulomb operator. -We further obtain the needed spectral representation of $\mel{N}{T \hpsi(3) \hpsi^{\dagger}(4)}{N,s}$ expanding the field operators over a complete orbital basis creation/destruction operators: +We further obtain the needed spectral representation of $\mel{N}{T \hpsi(3) \hpsi^{\dagger}(4)}{N,s}$ expanding the field operators over a complete orbital basis creation/destruction operators \titou{(T2: I don't understand why we need this spectral representation)}: \begin{multline} \mel{N}{T \hpsi(3) \hpsi^{\dagger}(4)}{N,s} \\ = - \qty( e^{ -i \Omega_s t^{34} } ) \sum_{pq} \phi_p(\bx_3) \phi_q^*(\bx_4) \mel{N}{\ha_q^{\dagger} \ha_p}{N,s} \\ - \times \qty[ \theta( \tau ) e^{- i ( \e{p} - \hOms ) \tau } + \theta( -\tau ) e^{ - i ( \e{q} + \hOms) \tau } ] + \times \qty[ \theta( \tau_{34} ) e^{- i ( \e{p} - \hOms ) \tau_{34} } + \theta( -\tau_{34} ) e^{ - i ( \e{q} + \hOms) \tau_{34} } ] \end{multline} -with $\tau = \tau_{34}$ and where the $ \lbrace \eps_{n/m} \rbrace$ are proper addition/removal energies such that +where the $ \lbrace \eps_{p/q} \rbrace$ are proper addition/removal energies \titou{(T2: shall it be mentioned earlier around Eq. (14)?)} such that \begin{equation} - e^{i {\hat H} \tau} \ha_p^{\dagger} \ket{N} = e^{ i (E_0^N + \e{p} ) \tau } \ha_p^{\dagger} \ket{N} + e^{i \hH \tau} \ha_p^{\dagger} \ket{N} = e^{ i (E_0^N + \e{p} ) \tau } \ha_p^{\dagger} \ket{N} \end{equation} - with ${\hat H}$ the exact many-body Hamiltonian. +with $\hH$ the exact many-body Hamiltonian. The $GW$ quasiparticle energies $\eGW{i/a}$ are good approximations to such removal/addition energies. Selecting $(p,q)=(j,b)$ yields the largest components $X_{jb}^{s} = \mel{N}{\ha_j^{\dagger} \ha_b}{N,s}$, while $(p,q)=(b,j)$ yields much weaker -$Y_{jb}^{s} = \mel{N}{\ha_b^{\dagger} \ha_j}{N,s}$ contributions. We used chemist notations with $(i,j)$ indexing occupied orbitals and $(a,b)$ virtual ones. +$Y_{jb}^{s} = \mel{N}{\ha_b^{\dagger} \ha_j}{N,s}$ contributions. Neglecting the $Y_{jb}^{s}$ weights leads to the Tamm-Dancoff approximation (TDA). -Working out the same expansion for $\mel{N}{T \hpsi(5) \hpsi^{\dagger}(5)}{N,s}$ and $\mel{N}{T \hpsi(\bx_1) \hpsi^{\dagger}(\bx_{1'})}{N,s}$, and projecting onto $\phi_a^*(\bx_1) \phi_i(\bx_{1'})$, one obtains after a few tedious manipulations (see {\SI}) the dynamical Bethe-Salpeter equation (dBSE) : +Working out the same expansion for $\mel{N}{T \hpsi(5) \hpsi^{\dagger}(5)}{N,s}$ and $\mel{N}{T \hpsi(\bx_1) \hpsi^{\dagger}(\bx_{1'})}{N,s}$ \titou{(where do we need these terms?)}, and projecting onto $\phi_a^*(\bx_1) \phi_i(\bx_{1'})$, one obtains after a few tedious manipulations (see {\SI}) the dynamical Bethe-Salpeter equation (dBSE): \begin{equation} \begin{split} ( \e{a} - \e{i} - \Oms ) X_{ia}^{s} @@ -401,14 +404,16 @@ with an effective dynamically screened Coulomb potential (see Pina eq. 24): \\ \times \qty[ \frac{1}{ \Omega_{ib}^s - \omega + i \eta } + \frac{1}{ \Omega_{ja}^{s} + \omega + i\eta } ] \end{multline} -where $\Om{ib}{s} = \Oms - ( \e{b} - \e{i} )$ and $\Om{ja}{s} = \Oms - ( \e{a} - \e{j} )$. The Coulomb matrix elements are defined following the Mulliken notations : -\begin{align*} - v_{ai,bj} &= \int d{\bf r} d{\bf r}' \; \phi_a({\bf r}) \phi_i^*({\bf r}) v({\bf r} -{\bf r}') - \phi_b^*({\bf r}') \phi_j({\bf r}') \\ - W_{ij,ab}({\omega}) &= \int d{\bf r} d{\bf r}' \; \phi_i({\bf r}) \phi_j^*({\bf r}) W({\bf r} ,{\bf r}'; \omega) - \phi_a^*({\bf r}') \phi_b({\bf r}') -\end{align*} -where we group together the indices of orbitals taken at the same space position, taking further as inner indices those associated with MO with complex conjugation. +where $\Om{ib}{s} = \Oms - ( \e{b} - \e{i} )$ and $\Om{ja}{s} = \Oms - ( \e{a} - \e{j} )$. +Following Mulliken's notations, the Coulomb matrix elements are defined as +\begin{align} + v_{ai,bj} + & = \int d\br d\br' \; \phi_a(\br) \phi_i^*(\br) v(\br -\br') \phi_b^*(\br') \phi_j(\br'), + \\ + W_{ij,ab}({\omega}) + & = \int d\br d\br' \; \phi_i(\br) \phi_j^*(\br) W(\br ,\br'; \omega) \phi_a^*(\br') \phi_b(\br'), +\end{align} +where we group together the indices of orbitals taken at the same space position, taking further as inner indices those associated with orbitals with complex conjugation. \xavier{A second coupled equation for the $(X_{ia}^{s}, Y_{ia}^{s} )$ vector can be obtained by projecting now onto the $\mel{N}{T \hpsi(\bx_1) \hpsi^{\dagger}(\bx_{1'})}{N,s}$ left-hand side and right-hand-side of the BSE, leading to : } @@ -471,7 +476,7 @@ For a closed-shell system in a finite basis, to compute the BSE excitation energ \label{eq:LR-dyn} \begin{pmatrix} \bA{}(\omega) & \bB{}(\omega) \\ - -\bB{}(\omega) & -\bA{}(\omega) \\ + -\bB{}(\titou{-}\omega) & -\bA{}(\titou{-}\omega) \\ \end{pmatrix} \cdot \begin{pmatrix} @@ -548,12 +553,13 @@ with where the $\e{p}$'s are taken as the HF orbital energies in the case of $G_0W_0$ or as the $GW$ quasiparticle energies in the case of self-consistent schemes such as ev$GW$. Now, let us decompose, using basic perturbation theory, the non-linear eigenproblem \eqref{eq:LR-dyn} as a zeroth-order static (hence linear) reference and a first-order dynamic (hence non-linear) perturbation, such that -\begin{equation} +\begin{multline} \label{eq:LR-PT} \begin{pmatrix} \bA{}(\omega) & \bB{}(\omega) \\ - -\bB{}(\omega) & -\bA{}(\omega) \\ + -\bB{}(\titou{-}\omega) & -\bA{}(\titou{-}\omega) \\ \end{pmatrix} + \\ = \begin{pmatrix} \bA{(0)} & \bB{(0)} \\ @@ -561,10 +567,10 @@ Now, let us decompose, using basic perturbation theory, the non-linear eigenprob \end{pmatrix} + \begin{pmatrix} - \bA{(1)}(\omega) & \bB{(1)}(\omega) \\ - -\bB{(1)}(\omega) & -\bA{(1)}(\omega) \\ + \bA{(1)}(\omega) & \bB{(1)}(\omega) \\ + -\bB{(1)}(\titou{-}\omega) & -\bA{(1)}(\titou{-}\omega) \\ \end{pmatrix} -\end{equation} +\end{multline} with \begin{subequations} \begin{align} @@ -642,7 +648,7 @@ and, thanks to first-order perturbation theory, the first-order correction to th \cdot \begin{pmatrix} \bA{(1)}(\Om{m}{(0)}) & \bB{(1)}(\Om{m}{(0)}) \\ - -\bB{(1)}(\Om{m}{(0)}) & -\bA{(1)}(\Om{m}{(0)}) \\ + -\bB{(1)}(\titou{-}\Om{m}{(0)}) & -\bA{(1)}(\titou{-}\Om{m}{(0)}) \\ \end{pmatrix} \cdot \begin{pmatrix}