Merge pull request #3 from pfloos/overleaf-2020-07-01-0750
Overleaf 2020 07 01 0750
This commit is contained in:
commit
5543276ef2
28
BSEdyn.bib
28
BSEdyn.bib
@ -12796,21 +12796,6 @@
|
|||||||
Year = {2016},
|
Year = {2016},
|
||||||
Bdsk-Url-1 = {https://dx.doi.org/10.1063/1.4940139}}
|
Bdsk-Url-1 = {https://dx.doi.org/10.1063/1.4940139}}
|
||||||
|
|
||||||
@article{Boulanger_2014,
|
|
||||||
Author = {Boulanger, Paul and Jacquemin, Denis and Duchemin, Ivan and Blase, Xavier},
|
|
||||||
Doi = {10.1021/ct401101u},
|
|
||||||
File = {/Users/loos/Zotero/storage/KTW3SS9F/Boulanger_2014.pdf},
|
|
||||||
Issn = {1549-9618, 1549-9626},
|
|
||||||
Journal = {J. Chem. Theory Comput.},
|
|
||||||
Language = {en},
|
|
||||||
Month = mar,
|
|
||||||
Number = {3},
|
|
||||||
Pages = {1212--1218},
|
|
||||||
Title = {Fast and {{Accurate Electronic Excitations}} in {{Cyanines}} with the {{Many}}-{{Body Bethe}}\textendash{}{{Salpeter Approach}}},
|
|
||||||
Volume = {10},
|
|
||||||
Year = {2014},
|
|
||||||
Bdsk-Url-1 = {https://dx.doi.org/10.1021/ct401101u}}
|
|
||||||
|
|
||||||
@article{Bruneval_2009,
|
@article{Bruneval_2009,
|
||||||
Author = {Bruneval, Fabien},
|
Author = {Bruneval, Fabien},
|
||||||
Doi = {10.1103/PhysRevLett.103.176403},
|
Doi = {10.1103/PhysRevLett.103.176403},
|
||||||
@ -14439,3 +14424,16 @@
|
|||||||
Year = {2016},
|
Year = {2016},
|
||||||
Bdsk-Url-1 = {https://link.aps.org/doi/10.1103/PhysRevB.93.235113},
|
Bdsk-Url-1 = {https://link.aps.org/doi/10.1103/PhysRevB.93.235113},
|
||||||
Bdsk-Url-2 = {https://doi.org/10.1103/PhysRevB.93.235113}}
|
Bdsk-Url-2 = {https://doi.org/10.1103/PhysRevB.93.235113}}
|
||||||
|
|
||||||
|
@article{Boulanger_2014,
|
||||||
|
author = {Boulanger, Paul and Jacquemin, Denis and Duchemin, Ivan and Blase, Xavier},
|
||||||
|
title = {Fast and Accurate Electronic Excitations in Cyanines with the Many-Body Bethe-Salpeter Approach},
|
||||||
|
journal = {J. Chem. Theory Comput.},
|
||||||
|
volume = {10},
|
||||||
|
number = {3},
|
||||||
|
pages = {1212--1218},
|
||||||
|
year = {2014},
|
||||||
|
doi = {10.1021/ct401101u},
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
11
BSEdyn.tex
11
BSEdyn.tex
@ -1100,7 +1100,7 @@ with $\tau_{13} = (t_1-t_3)$ to obtain:
|
|||||||
\int \frac{ d\omega }{ 2i\pi } \; G(x_1,x_3;\omega) \; G(x_4,x_{1'};\omega-\omega_1)
|
\int \frac{ d\omega }{ 2i\pi } \; G(x_1,x_3;\omega) \; G(x_4,x_{1'};\omega-\omega_1)
|
||||||
e^{ i \omega t_3 } e^{-i (\omega-\omega_1) t_4 } \nonumber
|
e^{ i \omega t_3 } e^{-i (\omega-\omega_1) t_4 } \nonumber
|
||||||
\end{equation}
|
\end{equation}
|
||||||
With the change of variable $\omega \\to \omega + {\omega_1}/2$ one obtains readily
|
With the change of variable $\omega \to \omega + {\omega_1}/2$ one obtains readily
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
[L_0](x_1,3;x_{1'},4 \; | \; \omega_1 ) = e^{ i \omega_1 t^{34} }
|
[L_0](x_1,3;x_{1'},4 \; | \; \omega_1 ) = e^{ i \omega_1 t^{34} }
|
||||||
\int \frac{ d\omega }{ 2i\pi } \; G\qty(x_1,x_3;\omega+ \frac{\omega_1}{2} ) G\qty(x_4,x_{1'};\omega-\frac{\omega_1}{2} ) \;
|
\int \frac{ d\omega }{ 2i\pi } \; G\qty(x_1,x_3;\omega+ \frac{\omega_1}{2} ) G\qty(x_4,x_{1'};\omega-\frac{\omega_1}{2} ) \;
|
||||||
@ -1134,7 +1134,7 @@ with $ (\omega_1 \rightarrow \Omega_s )$.
|
|||||||
= \theta(\tau_{65}) \mel{N}{ \hpsi(6) \hpsi^{\dagger}(5) }{N,s}
|
= \theta(\tau_{65}) \mel{N}{ \hpsi(6) \hpsi^{\dagger}(5) }{N,s}
|
||||||
- \theta(-\tau_{65}) \mel{N}{ \hpsi^{\dagger}(5) \hpsi(6) }{N,s}
|
- \theta(-\tau_{65}) \mel{N}{ \hpsi^{\dagger}(5) \hpsi(6) }{N,s}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
we use the relation between operators in their HeEisenberg and Schr\"{o}dinger representations (Eq.~\ref{Eisenberg}) to obtain:
|
we use the relation between operators in their Heisenberg and Schr\"{o}dinger representations (Eq.~\ref{Eisenberg}) to obtain:
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\langle N | T [\hpsi(6) \hpsi^{\dagger}(5)] | N,s \rangle = \\
|
\langle N | T [\hpsi(6) \hpsi^{\dagger}(5)] | N,s \rangle = \\
|
||||||
+ \theta(\tau_{65}) \mel{N}{ \hpsi(x_6) e^{-i{\hat H} \tau_{65}} \hpsi^{\dagger}(x_5) }{N,s} e^{ i E^N_0 t_6 } e^{ - i E^N_s t_5 }
|
+ \theta(\tau_{65}) \mel{N}{ \hpsi(x_6) e^{-i{\hat H} \tau_{65}} \hpsi^{\dagger}(x_5) }{N,s} e^{ i E^N_0 t_6 } e^{ - i E^N_s t_5 }
|
||||||
@ -1143,9 +1143,8 @@ we use the relation between operators in their HeEisenberg and Schr\"{o}dinger
|
|||||||
with $E^N_0$ the N-electron ground-state energy and $E^N_s$ the enrgy of the s-th excited state $| N,s \rangle$. Expanding now the field operators with creation/destruction operators in the MO basis
|
with $E^N_0$ the N-electron ground-state energy and $E^N_s$ the enrgy of the s-th excited state $| N,s \rangle$. Expanding now the field operators with creation/destruction operators in the MO basis
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\hpsi(x_6) & = \sum_p \phi_p(x_6) {\hat a}_p
|
\hpsi(x_6) & = \sum_p \phi_p(x_6) {\hat a}_p
|
||||||
& \;\;\; \text{and} \;\;\;
|
&
|
||||||
\hpsi^{\dagger}(x_5) & = \sum_q \phi_q^{*}(x_5)
|
\hpsi^{\dagger}(x_5) & = \sum_q \phi_q^{*}(x_5) {\hat a}^{\dagger}_q
|
||||||
{\hat a}^{\dagger}_q
|
|
||||||
\end{align*}
|
\end{align*}
|
||||||
one obtains
|
one obtains
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
@ -1157,7 +1156,7 @@ one obtains
|
|||||||
We now act on the $N$-electron ground-state with
|
We now act on the $N$-electron ground-state with
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
e^{i{\hat H} \tau_{65} } {\hat a}^{\dagger}_p | N \rangle &=
|
e^{i{\hat H} \tau_{65} } {\hat a}^{\dagger}_p | N \rangle &=
|
||||||
e^{i ( E^N_0 + \varepsilon_p ) \tau_{65} } | N \rangle &\\
|
e^{i ( E^N_0 + \varepsilon_p ) \tau_{65} } | N \rangle &
|
||||||
e^{ -i{\hat H} \tau_{65} } {\hat a}_q | N \rangle &=
|
e^{ -i{\hat H} \tau_{65} } {\hat a}_q | N \rangle &=
|
||||||
e^{-i ( E^N_0 - \varepsilon_q ) \tau_{65} } | N \rangle
|
e^{-i ( E^N_0 - \varepsilon_q ) \tau_{65} } | N \rangle
|
||||||
\end{align*}
|
\end{align*}
|
||||||
|
Loading…
Reference in New Issue
Block a user