Merge pull request #3 from pfloos/overleaf-2020-07-01-0750

Overleaf 2020 07 01 0750
This commit is contained in:
Pierre-Francois Loos 2020-07-01 20:36:27 +02:00 committed by GitHub
commit 5543276ef2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 18 additions and 21 deletions

View File

@ -12796,21 +12796,6 @@
Year = {2016},
Bdsk-Url-1 = {https://dx.doi.org/10.1063/1.4940139}}
@article{Boulanger_2014,
Author = {Boulanger, Paul and Jacquemin, Denis and Duchemin, Ivan and Blase, Xavier},
Doi = {10.1021/ct401101u},
File = {/Users/loos/Zotero/storage/KTW3SS9F/Boulanger_2014.pdf},
Issn = {1549-9618, 1549-9626},
Journal = {J. Chem. Theory Comput.},
Language = {en},
Month = mar,
Number = {3},
Pages = {1212--1218},
Title = {Fast and {{Accurate Electronic Excitations}} in {{Cyanines}} with the {{Many}}-{{Body Bethe}}\textendash{}{{Salpeter Approach}}},
Volume = {10},
Year = {2014},
Bdsk-Url-1 = {https://dx.doi.org/10.1021/ct401101u}}
@article{Bruneval_2009,
Author = {Bruneval, Fabien},
Doi = {10.1103/PhysRevLett.103.176403},
@ -14439,3 +14424,16 @@
Year = {2016},
Bdsk-Url-1 = {https://link.aps.org/doi/10.1103/PhysRevB.93.235113},
Bdsk-Url-2 = {https://doi.org/10.1103/PhysRevB.93.235113}}
@article{Boulanger_2014,
author = {Boulanger, Paul and Jacquemin, Denis and Duchemin, Ivan and Blase, Xavier},
title = {Fast and Accurate Electronic Excitations in Cyanines with the Many-Body Bethe-Salpeter Approach},
journal = {J. Chem. Theory Comput.},
volume = {10},
number = {3},
pages = {1212--1218},
year = {2014},
doi = {10.1021/ct401101u},
}

View File

@ -1100,7 +1100,7 @@ with $\tau_{13} = (t_1-t_3)$ to obtain:
\int \frac{ d\omega }{ 2i\pi } \; G(x_1,x_3;\omega) \; G(x_4,x_{1'};\omega-\omega_1)
e^{ i \omega t_3 } e^{-i (\omega-\omega_1) t_4 } \nonumber
\end{equation}
With the change of variable $\omega \\to \omega + {\omega_1}/2$ one obtains readily
With the change of variable $\omega \to \omega + {\omega_1}/2$ one obtains readily
\begin{equation}
[L_0](x_1,3;x_{1'},4 \; | \; \omega_1 ) = e^{ i \omega_1 t^{34} }
\int \frac{ d\omega }{ 2i\pi } \; G\qty(x_1,x_3;\omega+ \frac{\omega_1}{2} ) G\qty(x_4,x_{1'};\omega-\frac{\omega_1}{2} ) \;
@ -1134,7 +1134,7 @@ with $ (\omega_1 \rightarrow \Omega_s )$.
= \theta(\tau_{65}) \mel{N}{ \hpsi(6) \hpsi^{\dagger}(5) }{N,s}
- \theta(-\tau_{65}) \mel{N}{ \hpsi^{\dagger}(5) \hpsi(6) }{N,s}
\end{equation}
we use the relation between operators in their HeEisenberg and Schr\"{o}dinger representations (Eq.~\ref{Eisenberg}) to obtain:
we use the relation between operators in their Heisenberg and Schr\"{o}dinger representations (Eq.~\ref{Eisenberg}) to obtain:
\begin{equation}
\langle N | T [\hpsi(6) \hpsi^{\dagger}(5)] | N,s \rangle = \\
+ \theta(\tau_{65}) \mel{N}{ \hpsi(x_6) e^{-i{\hat H} \tau_{65}} \hpsi^{\dagger}(x_5) }{N,s} e^{ i E^N_0 t_6 } e^{ - i E^N_s t_5 }
@ -1143,9 +1143,8 @@ we use the relation between operators in their HeEisenberg and Schr\"{o}dinger
with $E^N_0$ the N-electron ground-state energy and $E^N_s$ the enrgy of the s-th excited state $| N,s \rangle$. Expanding now the field operators with creation/destruction operators in the MO basis
\begin{align*}
\hpsi(x_6) & = \sum_p \phi_p(x_6) {\hat a}_p
& \;\;\; \text{and} \;\;\;
\hpsi^{\dagger}(x_5) & = \sum_q \phi_q^{*}(x_5)
{\hat a}^{\dagger}_q
&
\hpsi^{\dagger}(x_5) & = \sum_q \phi_q^{*}(x_5) {\hat a}^{\dagger}_q
\end{align*}
one obtains
\begin{equation}
@ -1157,7 +1156,7 @@ one obtains
We now act on the $N$-electron ground-state with
\begin{align*}
e^{i{\hat H} \tau_{65} } {\hat a}^{\dagger}_p | N \rangle &=
e^{i ( E^N_0 + \varepsilon_p ) \tau_{65} } | N \rangle &\\
e^{i ( E^N_0 + \varepsilon_p ) \tau_{65} } | N \rangle &
e^{ -i{\hat H} \tau_{65} } {\hat a}_q | N \rangle &=
e^{-i ( E^N_0 - \varepsilon_q ) \tau_{65} } | N \rangle
\end{align*}