fix
This commit is contained in:
parent
7a1eeffa42
commit
5097e506f4
@ -670,50 +670,50 @@ For the double excitation, dBSE2 yields a slightly better energy, yet still in q
|
||||
\subsection{The forgotten kernel: Sangalli's kernel}
|
||||
\label{sec:Sangalli}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\titou{This section is experimental...}
|
||||
In Ref.~\onlinecite{Sangalli_2011}, Sangalli proposed a dynamical kernel (based on the second RPA) without (he claims) spurious excitations thanks to the design of a number-conserving approach which correctly describes particle indistinguishability and Pauli exclusion principle.
|
||||
We will first start by writing down explicitly this kernel as it is given in obscure physicist notations in the original article.
|
||||
|
||||
The Hamiltonian with Sangalli's kernel is (I think)
|
||||
\begin{equation}
|
||||
\bH_\text{S}^{\sigma}(\omega) =
|
||||
\begin{pmatrix}
|
||||
\bR_\text{S}^{\sigma}(\omega) & \bC_\text{S}^{\sigma}(\omega)
|
||||
\\
|
||||
-\bC_\text{S}^{\sigma}(-\omega) & -\bR_\text{S}^{\sigma}(-\omega)
|
||||
\end{pmatrix}
|
||||
\end{equation}
|
||||
with
|
||||
\begin{subequations}
|
||||
\begin{gather}
|
||||
R_{ia,jb}^{\sigma}(\omega) = \delta_{ij} \delta_{ab} (\eGW{a} - \eGW{i}) + f_{ia,jb}^{\sigma} (\omega)
|
||||
\\
|
||||
C_{ia,jb}^{\sigma}(\omega) = f_{ia,bj}^{\sigma} (\omega)
|
||||
\end{gather}
|
||||
\end{subequations}
|
||||
and
|
||||
\begin{subequations}
|
||||
\begin{gather}
|
||||
f_{ia,jb}^{\sigma} (\omega) = \sum_{m \neq n} \frac{ c_{ia,mn} c_{jb,mn} }{\omega - ( \omega_{m} + \omega_{n})}
|
||||
\\
|
||||
c_{ia,mn}^{\sigma} = \frac{1}{2} \sum_{jb,kc} \qty{ \qty[ \ERI{ij}{kc} \delta_{ab} + \ERI{kc}{ab} \delta_{ij} ] \qty[ R_{m,jc} R_{n,kb}
|
||||
+ R_{m,kb} R_{n,jc} ] }
|
||||
\end{gather}
|
||||
\end{subequations}
|
||||
where $R_{m,ia}$ are the elements of the RPA eigenvectors.
|
||||
|
||||
For the two-level model, Sangalli's kernel reads
|
||||
\begin{align}
|
||||
R(\omega) & = \Delta\eGW{} + f_R (\omega)
|
||||
\\
|
||||
C(\omega) & = f_C (\omega)
|
||||
\end{align}
|
||||
|
||||
\begin{gather}
|
||||
f_R (\omega) = 2 \frac{ [\ERI{vv}{vc} + \ERI{vc}{cc}]^2 }{\omega - 2\omega_1}
|
||||
\\
|
||||
f_C (\omega) = 0
|
||||
\end{gather}
|
||||
%\titou{This section is experimental...}
|
||||
%In Ref.~\onlinecite{Sangalli_2011}, Sangalli proposed a dynamical kernel (based on the second RPA) without (he claims) spurious excitations thanks to the design of a number-conserving approach which correctly describes particle indistinguishability and Pauli exclusion principle.
|
||||
%We will first start by writing down explicitly this kernel as it is given in obscure physicist notations in the original article.
|
||||
%
|
||||
%The Hamiltonian with Sangalli's kernel is (I think)
|
||||
%\begin{equation}
|
||||
% \bH_\text{S}^{\sigma}(\omega) =
|
||||
% \begin{pmatrix}
|
||||
% \bR_\text{S}^{\sigma}(\omega) & \bC_\text{S}^{\sigma}(\omega)
|
||||
% \\
|
||||
% -\bC_\text{S}^{\sigma}(-\omega) & -\bR_\text{S}^{\sigma}(-\omega)
|
||||
% \end{pmatrix}
|
||||
%\end{equation}
|
||||
%with
|
||||
%\begin{subequations}
|
||||
%\begin{gather}
|
||||
% R_{ia,jb}^{\sigma}(\omega) = \delta_{ij} \delta_{ab} (\eGW{a} - \eGW{i}) + f_{ia,jb}^{\sigma} (\omega)
|
||||
% \\
|
||||
% C_{ia,jb}^{\sigma}(\omega) = f_{ia,bj}^{\sigma} (\omega)
|
||||
%\end{gather}
|
||||
%\end{subequations}
|
||||
%and
|
||||
%\begin{subequations}
|
||||
%\begin{gather}
|
||||
% f_{ia,jb}^{\sigma} (\omega) = \sum_{m \neq n} \frac{ c_{ia,mn} c_{jb,mn} }{\omega - ( \omega_{m} + \omega_{n})}
|
||||
% \\
|
||||
% c_{ia,mn}^{\sigma} = \frac{1}{2} \sum_{jb,kc} \qty{ \qty[ \ERI{ij}{kc} \delta_{ab} + \ERI{kc}{ab} \delta_{ij} ] \qty[ R_{m,jc} R_{n,kb}
|
||||
% + R_{m,kb} R_{n,jc} ] }
|
||||
%\end{gather}
|
||||
%\end{subequations}
|
||||
%where $R_{m,ia}$ are the elements of the RPA eigenvectors.
|
||||
%
|
||||
%For the two-level model, Sangalli's kernel reads
|
||||
%\begin{align}
|
||||
% R(\omega) & = \Delta\eGW{} + f_R (\omega)
|
||||
% \\
|
||||
% C(\omega) & = f_C (\omega)
|
||||
%\end{align}
|
||||
%
|
||||
%\begin{gather}
|
||||
% f_R (\omega) = 2 \frac{ [\ERI{vv}{vc} + \ERI{vc}{cc}]^2 }{\omega - 2\omega_1}
|
||||
% \\
|
||||
% f_C (\omega) = 0
|
||||
%\end{gather}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Take-home messages}
|
||||
|
Loading…
Reference in New Issue
Block a user