added comment on SOPPA

This commit is contained in:
Pierre-Francois Loos 2020-06-22 20:47:22 +02:00
parent 5097e506f4
commit 4c207379cf
2 changed files with 78 additions and 46 deletions

View File

@ -1,13 +1,45 @@
%% This BibTeX bibliography file was created using BibDesk.
%% http://bibdesk.sourceforge.net/
%% Created for Pierre-Francois Loos at 2020-06-22 10:36:09 +0200
%% Created for Pierre-Francois Loos at 2020-06-22 20:38:15 +0200
%% Saved with string encoding Unicode (UTF-8)
@article{Nielsen_1980,
Author = {Egon S. Nielsen and Poul Jorgensen},
Date-Added = {2020-06-22 20:37:32 +0200},
Date-Modified = {2020-06-22 20:38:12 +0200},
Doi = {10.1063/1.440119},
Journal = {J. Chem. Phys.},
Pages = {6238},
Title = {Transition moments and dynamic polarizabilities in a second order polarization propagator approach},
Volume = {73},
Year = {1980}}
@article{Oddershede_1977,
Author = {Jens Oddershede and Poul Jorgensen},
Date-Added = {2020-06-22 20:36:10 +0200},
Date-Modified = {2020-06-22 20:36:52 +0200},
Doi = {10.1063/1.434118},
Journal = {J. Chem. Phys.},
Pages = {1541},
Title = {An order analysis of the particle--hole propagator},
Volume = {66},
Year = {1977}}
@phdthesis{Huix-Rotllant_PhD,
Author = {M. Huix-Rotllant},
Date-Added = {2020-06-22 20:32:30 +0200},
Date-Modified = {2020-06-22 20:34:35 +0200},
School = {Universit{\'e} de Grenoble},
Title = {Improved correlation kernels for linear-response time-dependent density-functional theory},
Url = {https://tel.archives-ouvertes.fr/tel-00680039/},
Year = {2011},
Bdsk-Url-1 = {https://tel.archives-ouvertes.fr/tel-01027522}}
@article{Loos_2020e,
Author = {X. Blase and Y. Duchemin and D. Jacquemin},
Date-Added = {2020-06-22 09:07:38 +0200},

View File

@ -619,6 +619,7 @@ Note that, unlike the dBSE Hamiltonian [see Eq.~\eqref{eq:HBSE}], the BSE2 dynam
This latter point has an important consequence as this lack of frequency dependence removes one of the spurious pole (see Fig.~\ref{fig:BSE2}).
The singlet manifold has then the right number of excitations.
However, one spurious triplet excitation remains.
It is mentioned in Ref.~\onlinecite{Rebolini_2016} that the BSE2 kernel has some similarities with the second-order polarization-propagator approximation \cite{Oddershede_1977,Nielsen_1980} (SOPPA) and second RPA kernels. \cite{Huix-Rotllant_2011,Huix-Rotllant_PhD,Sangalli_2011}
Numerical results for the two-level model are reported in Table \ref{tab:BSE2} with the usual approximations and perturbative treatments.
In the case of BSE2, the perturbative partitioning is simply
\begin{equation}
@ -654,7 +655,6 @@ As compared to dBSE, dBSE2 produces much larger corrections to the static excita
Overall, the accuracy of dBSE and dBSE2 are comparable (see Tables \ref{tab:BSE} and \ref{tab:BSE2}) for single excitations although their behavior is quite different.
For the double excitation, dBSE2 yields a slightly better energy, yet still in quite poor agreement with the exact value.
%%% FIGURE 3 %%%
\begin{figure}
\includegraphics[width=\linewidth]{dBSE2}
@ -670,50 +670,50 @@ For the double excitation, dBSE2 yields a slightly better energy, yet still in q
\subsection{The forgotten kernel: Sangalli's kernel}
\label{sec:Sangalli}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\titou{This section is experimental...}
%In Ref.~\onlinecite{Sangalli_2011}, Sangalli proposed a dynamical kernel (based on the second RPA) without (he claims) spurious excitations thanks to the design of a number-conserving approach which correctly describes particle indistinguishability and Pauli exclusion principle.
%We will first start by writing down explicitly this kernel as it is given in obscure physicist notations in the original article.
%
%The Hamiltonian with Sangalli's kernel is (I think)
%\begin{equation}
% \bH_\text{S}^{\sigma}(\omega) =
% \begin{pmatrix}
% \bR_\text{S}^{\sigma}(\omega) & \bC_\text{S}^{\sigma}(\omega)
% \\
% -\bC_\text{S}^{\sigma}(-\omega) & -\bR_\text{S}^{\sigma}(-\omega)
% \end{pmatrix}
%\end{equation}
%with
%\begin{subequations}
%\begin{gather}
% R_{ia,jb}^{\sigma}(\omega) = \delta_{ij} \delta_{ab} (\eGW{a} - \eGW{i}) + f_{ia,jb}^{\sigma} (\omega)
% \\
% C_{ia,jb}^{\sigma}(\omega) = f_{ia,bj}^{\sigma} (\omega)
%\end{gather}
%\end{subequations}
%and
%\begin{subequations}
%\begin{gather}
% f_{ia,jb}^{\sigma} (\omega) = \sum_{m \neq n} \frac{ c_{ia,mn} c_{jb,mn} }{\omega - ( \omega_{m} + \omega_{n})}
% \\
% c_{ia,mn}^{\sigma} = \frac{1}{2} \sum_{jb,kc} \qty{ \qty[ \ERI{ij}{kc} \delta_{ab} + \ERI{kc}{ab} \delta_{ij} ] \qty[ R_{m,jc} R_{n,kb}
% + R_{m,kb} R_{n,jc} ] }
%\end{gather}
%\end{subequations}
%where $R_{m,ia}$ are the elements of the RPA eigenvectors.
%
%For the two-level model, Sangalli's kernel reads
%\begin{align}
% R(\omega) & = \Delta\eGW{} + f_R (\omega)
% \\
% C(\omega) & = f_C (\omega)
%\end{align}
%
%\begin{gather}
% f_R (\omega) = 2 \frac{ [\ERI{vv}{vc} + \ERI{vc}{cc}]^2 }{\omega - 2\omega_1}
% \\
% f_C (\omega) = 0
%\end{gather}
\titou{This section is experimental...}
In Ref.~\onlinecite{Sangalli_2011}, Sangalli proposed a dynamical kernel (based on the second RPA) without (he claims) spurious excitations thanks to the design of a number-conserving approach which correctly describes particle indistinguishability and Pauli exclusion principle.
We will first start by writing down explicitly this kernel as it is given in obscure physicist notations in the original article.
The Hamiltonian with Sangalli's kernel is (I think)
\begin{equation}
\bH_\text{S}^{\sigma}(\omega) =
\begin{pmatrix}
\bR_\text{S}^{\sigma}(\omega) & \bC_\text{S}^{\sigma}(\omega)
\\
-\bC_\text{S}^{\sigma}(-\omega) & -\bR_\text{S}^{\sigma}(-\omega)
\end{pmatrix}
\end{equation}
with
\begin{subequations}
\begin{gather}
R_{ia,jb}^{\sigma}(\omega) = \delta_{ij} \delta_{ab} (\eGW{a} - \eGW{i}) + f_{ia,jb}^{\sigma} (\omega)
\\
C_{ia,jb}^{\sigma}(\omega) = f_{ia,bj}^{\sigma} (\omega)
\end{gather}
\end{subequations}
and
\begin{subequations}
\begin{gather}
f_{ia,jb}^{\sigma} (\omega) = \sum_{m \neq n} \frac{ c_{ia,mn} c_{jb,mn} }{\omega - ( \omega_{m} + \omega_{n})}
\\
c_{ia,mn}^{\sigma} = \sum_{jb,kc} \qty{ \qty[ \ERI{ij}{kc} \delta_{ab} + \ERI{kc}{ab} \delta_{ij} ] \qty[ R_{m,jc} R_{n,kb}
+ R_{m,kb} R_{n,jc} ] }
\end{gather}
\end{subequations}
where $R_{m,ia}$ are the elements of the RPA eigenvectors.
For the two-level model, Sangalli's kernel reads
\begin{align}
R(\omega) & = \Delta\eGW{} + f_R (\omega)
\\
C(\omega) & = f_C (\omega)
\end{align}
\begin{gather}
f_R (\omega) = 2 \frac{ [\ERI{vv}{vc} + \ERI{vc}{cc}]^2 }{\omega - 2\omega_1}
\\
f_C (\omega) = 0
\end{gather}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Take-home messages}