added comment on SOPPA
This commit is contained in:
parent
5097e506f4
commit
4c207379cf
34
BSEdyn.bib
34
BSEdyn.bib
@ -1,13 +1,45 @@
|
|||||||
%% This BibTeX bibliography file was created using BibDesk.
|
%% This BibTeX bibliography file was created using BibDesk.
|
||||||
%% http://bibdesk.sourceforge.net/
|
%% http://bibdesk.sourceforge.net/
|
||||||
|
|
||||||
%% Created for Pierre-Francois Loos at 2020-06-22 10:36:09 +0200
|
%% Created for Pierre-Francois Loos at 2020-06-22 20:38:15 +0200
|
||||||
|
|
||||||
|
|
||||||
%% Saved with string encoding Unicode (UTF-8)
|
%% Saved with string encoding Unicode (UTF-8)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@article{Nielsen_1980,
|
||||||
|
Author = {Egon S. Nielsen and Poul Jorgensen},
|
||||||
|
Date-Added = {2020-06-22 20:37:32 +0200},
|
||||||
|
Date-Modified = {2020-06-22 20:38:12 +0200},
|
||||||
|
Doi = {10.1063/1.440119},
|
||||||
|
Journal = {J. Chem. Phys.},
|
||||||
|
Pages = {6238},
|
||||||
|
Title = {Transition moments and dynamic polarizabilities in a second order polarization propagator approach},
|
||||||
|
Volume = {73},
|
||||||
|
Year = {1980}}
|
||||||
|
|
||||||
|
@article{Oddershede_1977,
|
||||||
|
Author = {Jens Oddershede and Poul Jorgensen},
|
||||||
|
Date-Added = {2020-06-22 20:36:10 +0200},
|
||||||
|
Date-Modified = {2020-06-22 20:36:52 +0200},
|
||||||
|
Doi = {10.1063/1.434118},
|
||||||
|
Journal = {J. Chem. Phys.},
|
||||||
|
Pages = {1541},
|
||||||
|
Title = {An order analysis of the particle--hole propagator},
|
||||||
|
Volume = {66},
|
||||||
|
Year = {1977}}
|
||||||
|
|
||||||
|
@phdthesis{Huix-Rotllant_PhD,
|
||||||
|
Author = {M. Huix-Rotllant},
|
||||||
|
Date-Added = {2020-06-22 20:32:30 +0200},
|
||||||
|
Date-Modified = {2020-06-22 20:34:35 +0200},
|
||||||
|
School = {Universit{\'e} de Grenoble},
|
||||||
|
Title = {Improved correlation kernels for linear-response time-dependent density-functional theory},
|
||||||
|
Url = {https://tel.archives-ouvertes.fr/tel-00680039/},
|
||||||
|
Year = {2011},
|
||||||
|
Bdsk-Url-1 = {https://tel.archives-ouvertes.fr/tel-01027522}}
|
||||||
|
|
||||||
@article{Loos_2020e,
|
@article{Loos_2020e,
|
||||||
Author = {X. Blase and Y. Duchemin and D. Jacquemin},
|
Author = {X. Blase and Y. Duchemin and D. Jacquemin},
|
||||||
Date-Added = {2020-06-22 09:07:38 +0200},
|
Date-Added = {2020-06-22 09:07:38 +0200},
|
||||||
|
@ -619,6 +619,7 @@ Note that, unlike the dBSE Hamiltonian [see Eq.~\eqref{eq:HBSE}], the BSE2 dynam
|
|||||||
This latter point has an important consequence as this lack of frequency dependence removes one of the spurious pole (see Fig.~\ref{fig:BSE2}).
|
This latter point has an important consequence as this lack of frequency dependence removes one of the spurious pole (see Fig.~\ref{fig:BSE2}).
|
||||||
The singlet manifold has then the right number of excitations.
|
The singlet manifold has then the right number of excitations.
|
||||||
However, one spurious triplet excitation remains.
|
However, one spurious triplet excitation remains.
|
||||||
|
It is mentioned in Ref.~\onlinecite{Rebolini_2016} that the BSE2 kernel has some similarities with the second-order polarization-propagator approximation \cite{Oddershede_1977,Nielsen_1980} (SOPPA) and second RPA kernels. \cite{Huix-Rotllant_2011,Huix-Rotllant_PhD,Sangalli_2011}
|
||||||
Numerical results for the two-level model are reported in Table \ref{tab:BSE2} with the usual approximations and perturbative treatments.
|
Numerical results for the two-level model are reported in Table \ref{tab:BSE2} with the usual approximations and perturbative treatments.
|
||||||
In the case of BSE2, the perturbative partitioning is simply
|
In the case of BSE2, the perturbative partitioning is simply
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
@ -654,7 +655,6 @@ As compared to dBSE, dBSE2 produces much larger corrections to the static excita
|
|||||||
Overall, the accuracy of dBSE and dBSE2 are comparable (see Tables \ref{tab:BSE} and \ref{tab:BSE2}) for single excitations although their behavior is quite different.
|
Overall, the accuracy of dBSE and dBSE2 are comparable (see Tables \ref{tab:BSE} and \ref{tab:BSE2}) for single excitations although their behavior is quite different.
|
||||||
For the double excitation, dBSE2 yields a slightly better energy, yet still in quite poor agreement with the exact value.
|
For the double excitation, dBSE2 yields a slightly better energy, yet still in quite poor agreement with the exact value.
|
||||||
|
|
||||||
|
|
||||||
%%% FIGURE 3 %%%
|
%%% FIGURE 3 %%%
|
||||||
\begin{figure}
|
\begin{figure}
|
||||||
\includegraphics[width=\linewidth]{dBSE2}
|
\includegraphics[width=\linewidth]{dBSE2}
|
||||||
@ -670,50 +670,50 @@ For the double excitation, dBSE2 yields a slightly better energy, yet still in q
|
|||||||
\subsection{The forgotten kernel: Sangalli's kernel}
|
\subsection{The forgotten kernel: Sangalli's kernel}
|
||||||
\label{sec:Sangalli}
|
\label{sec:Sangalli}
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
%\titou{This section is experimental...}
|
\titou{This section is experimental...}
|
||||||
%In Ref.~\onlinecite{Sangalli_2011}, Sangalli proposed a dynamical kernel (based on the second RPA) without (he claims) spurious excitations thanks to the design of a number-conserving approach which correctly describes particle indistinguishability and Pauli exclusion principle.
|
In Ref.~\onlinecite{Sangalli_2011}, Sangalli proposed a dynamical kernel (based on the second RPA) without (he claims) spurious excitations thanks to the design of a number-conserving approach which correctly describes particle indistinguishability and Pauli exclusion principle.
|
||||||
%We will first start by writing down explicitly this kernel as it is given in obscure physicist notations in the original article.
|
We will first start by writing down explicitly this kernel as it is given in obscure physicist notations in the original article.
|
||||||
%
|
|
||||||
%The Hamiltonian with Sangalli's kernel is (I think)
|
The Hamiltonian with Sangalli's kernel is (I think)
|
||||||
%\begin{equation}
|
\begin{equation}
|
||||||
% \bH_\text{S}^{\sigma}(\omega) =
|
\bH_\text{S}^{\sigma}(\omega) =
|
||||||
% \begin{pmatrix}
|
\begin{pmatrix}
|
||||||
% \bR_\text{S}^{\sigma}(\omega) & \bC_\text{S}^{\sigma}(\omega)
|
\bR_\text{S}^{\sigma}(\omega) & \bC_\text{S}^{\sigma}(\omega)
|
||||||
% \\
|
\\
|
||||||
% -\bC_\text{S}^{\sigma}(-\omega) & -\bR_\text{S}^{\sigma}(-\omega)
|
-\bC_\text{S}^{\sigma}(-\omega) & -\bR_\text{S}^{\sigma}(-\omega)
|
||||||
% \end{pmatrix}
|
\end{pmatrix}
|
||||||
%\end{equation}
|
\end{equation}
|
||||||
%with
|
with
|
||||||
%\begin{subequations}
|
\begin{subequations}
|
||||||
%\begin{gather}
|
\begin{gather}
|
||||||
% R_{ia,jb}^{\sigma}(\omega) = \delta_{ij} \delta_{ab} (\eGW{a} - \eGW{i}) + f_{ia,jb}^{\sigma} (\omega)
|
R_{ia,jb}^{\sigma}(\omega) = \delta_{ij} \delta_{ab} (\eGW{a} - \eGW{i}) + f_{ia,jb}^{\sigma} (\omega)
|
||||||
% \\
|
\\
|
||||||
% C_{ia,jb}^{\sigma}(\omega) = f_{ia,bj}^{\sigma} (\omega)
|
C_{ia,jb}^{\sigma}(\omega) = f_{ia,bj}^{\sigma} (\omega)
|
||||||
%\end{gather}
|
\end{gather}
|
||||||
%\end{subequations}
|
\end{subequations}
|
||||||
%and
|
and
|
||||||
%\begin{subequations}
|
\begin{subequations}
|
||||||
%\begin{gather}
|
\begin{gather}
|
||||||
% f_{ia,jb}^{\sigma} (\omega) = \sum_{m \neq n} \frac{ c_{ia,mn} c_{jb,mn} }{\omega - ( \omega_{m} + \omega_{n})}
|
f_{ia,jb}^{\sigma} (\omega) = \sum_{m \neq n} \frac{ c_{ia,mn} c_{jb,mn} }{\omega - ( \omega_{m} + \omega_{n})}
|
||||||
% \\
|
\\
|
||||||
% c_{ia,mn}^{\sigma} = \frac{1}{2} \sum_{jb,kc} \qty{ \qty[ \ERI{ij}{kc} \delta_{ab} + \ERI{kc}{ab} \delta_{ij} ] \qty[ R_{m,jc} R_{n,kb}
|
c_{ia,mn}^{\sigma} = \sum_{jb,kc} \qty{ \qty[ \ERI{ij}{kc} \delta_{ab} + \ERI{kc}{ab} \delta_{ij} ] \qty[ R_{m,jc} R_{n,kb}
|
||||||
% + R_{m,kb} R_{n,jc} ] }
|
+ R_{m,kb} R_{n,jc} ] }
|
||||||
%\end{gather}
|
\end{gather}
|
||||||
%\end{subequations}
|
\end{subequations}
|
||||||
%where $R_{m,ia}$ are the elements of the RPA eigenvectors.
|
where $R_{m,ia}$ are the elements of the RPA eigenvectors.
|
||||||
%
|
|
||||||
%For the two-level model, Sangalli's kernel reads
|
For the two-level model, Sangalli's kernel reads
|
||||||
%\begin{align}
|
\begin{align}
|
||||||
% R(\omega) & = \Delta\eGW{} + f_R (\omega)
|
R(\omega) & = \Delta\eGW{} + f_R (\omega)
|
||||||
% \\
|
\\
|
||||||
% C(\omega) & = f_C (\omega)
|
C(\omega) & = f_C (\omega)
|
||||||
%\end{align}
|
\end{align}
|
||||||
%
|
|
||||||
%\begin{gather}
|
\begin{gather}
|
||||||
% f_R (\omega) = 2 \frac{ [\ERI{vv}{vc} + \ERI{vc}{cc}]^2 }{\omega - 2\omega_1}
|
f_R (\omega) = 2 \frac{ [\ERI{vv}{vc} + \ERI{vc}{cc}]^2 }{\omega - 2\omega_1}
|
||||||
% \\
|
\\
|
||||||
% f_C (\omega) = 0
|
f_C (\omega) = 0
|
||||||
%\end{gather}
|
\end{gather}
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
\section{Take-home messages}
|
\section{Take-home messages}
|
||||||
|
Loading…
Reference in New Issue
Block a user