xav push
This commit is contained in:
parent
f8824e9f1e
commit
435d68e338
@ -259,7 +259,7 @@ Unless otherwise stated, atomic units are used.
|
||||
\subsection{Theory for physicists}
|
||||
%=================================
|
||||
|
||||
The resolution of the dynamical Bethe-Salpeter equation (dBSE) [Strinati]
|
||||
The resolution of the Bethe-Salpeter equation [Strinati]
|
||||
\begin{align*}
|
||||
L(1,2; & 1',2') = L_0(1,2;1',2') + \\
|
||||
&+ \int d3456 \;
|
||||
@ -283,8 +283,7 @@ $t_{2'} = t_2^+$ and $t_{1'} = t_1^+$, one obtains:
|
||||
\chi_s(x_1,x_{1'}) = \langle N | T {\hat \psi}(x_1) {\hat \psi}^{\dagger}(x_{1'}) | N,s \rangle \\
|
||||
{\tilde \chi}_s(x_2,x_{2'}) = \langle N,s | T {\hat \psi}(x_2) {\hat \psi}^{\dagger}(x_{2'}) | N \rangle
|
||||
\end{align*}
|
||||
The $\Oms$ are the neutral excitation energies of interest. Picking up the $e^{+i \Oms t_2 }$ component and simplifying by ${\tilde \chi}_s(x_2,x_{2'})
|
||||
e^{ i \Oms t_{2} }$ on both side of the Bethe-Salpeter equation, we are left with the search of the $e^{-i \Oms t_1 }$ Fourier component associated with the right-hand side of the BSE. For the lowest $\Oms$ excitation energies falling in the quasiparticle gap of the system, the $L_0(1,2;1',2')$ term cannot contribute since its lowest excitation energy is precisely the quasiparticle gap, namely the difference between the electronic affinity and the ionisation potential.
|
||||
The $\Oms$ are the neutral excitation energies of interest. Picking up the $e^{+i \Oms t_2 }$ component in $L(1,2; 1',2')$ and $L(6,2;5,2')$, simplifying further by ${\tilde \chi}_s(x_2,x_{2'})$ on both side of the Bethe-Salpeter equation, we are left with the search of the $e^{-i \Oms t_1 }$ Fourier component associated with the right-hand side of the BSE. For the lowest $\Oms$ excitation energies falling in the quasiparticle gap of the system, the $L_0(1,2;1',2')$ term cannot contribute since its lowest excitation energy is precisely the quasiparticle gap, namely the difference between the electronic affinity and the ionisation potential.
|
||||
|
||||
The Fourier components with respect to time $t_1$ of $iL_0(1, 4; 1', 3) = G(1, 3)G(4, 1')$ reads, dropping the (space/spin)-variables:
|
||||
\begin{align*}
|
||||
@ -332,7 +331,7 @@ one obtains after a few tedious manipulations (see Supplemental Information) the
|
||||
\widetilde{W}_{ij,ab}(\Oms) &= \frac{ i }{ 2 \pi} \int d\omega \; e^{-i \omega 0^+ } W_{ij,ab}(\omega) \times \\
|
||||
\hskip 1cm &\times \left[ \frac{1}{ \Omega_{ib}^s - \omega +i \eta } + \frac{1}{ \Omega_{ja}^{s} + \omega + i\eta } \right] \nonumber
|
||||
\end{align}
|
||||
with $\; \Omega_{ib}^s = \Oms - ( \varb - \vari )$ and $\; \Omega_{ja}^s = \Oms - ( \vara - \varj ).$
|
||||
where $\; \Omega_{ib}^s = \Oms - ( \varb - \vari )$ and $\; \Omega_{ja}^s = \Oms - ( \vara - \varj ).$
|
||||
In the present study, we use the exact spectral representation of $W(\omega)$ at the RPA level:
|
||||
\begin{align*}
|
||||
W_{ij,ab}(\omega) &= (ij|ab) + 2 \sum_m^{OV} [ij|m] [ab|m] \times \\
|
||||
@ -345,7 +344,7 @@ W_{ij,ab}(\omega) &= (ij|ab) + 2 \sum_m^{OV} [ij|m] [ab|m] \times \\
|
||||
\right] \nonumber
|
||||
\end{align}
|
||||
\textcolor{red}{Due to excitonic effects, the lowest BSE ${\Omega}_1$ excitation energy stands lower than the lowest $\Omega_m^{RPA}$ excitation energy, so that
|
||||
e.g. $( \Omega_{ib}^{s} - \Omega_m^{RPA} )$ is strictly negative and cannot diverge. Further, $\Omega_{ib}^{s}$ and $\Omega_{ja}^{s}$ are necessarily negative for in-gap low lying BSE excitations, such that e.g.
|
||||
e.g. $( \Omega_{ib}^{s} - \Omega_m^{RPA} )$ is strictly negative and $\widetilde{W}_{ij,ab}( \Oms )$ presents no resonances. Further, $\Omega_{ib}^{s}$ and $\Omega_{ja}^{s}$ are necessarily negative for in-gap low lying BSE excitations, such that e.g.
|
||||
$$
|
||||
\left| \frac{ 1 }{ \Omega_{ib}^{s} - \Omega_m^{RPA} } \right|
|
||||
< \frac{1}{ \Omega_m^{RPA} }
|
||||
|
Loading…
Reference in New Issue
Block a user