little piece of introduction

This commit is contained in:
Pierre-Francois Loos 2020-05-18 21:53:44 +02:00
parent 9be0f759f7
commit 363bd5f86b
2 changed files with 2457 additions and 1174 deletions

3592
BSEdyn.bib

File diff suppressed because it is too large Load Diff

View File

@ -52,7 +52,8 @@
\newcommand{\co}{\text{x}}
%
\newcommand{\Norb}{N}
\newcommand{\Nel}{N}
\newcommand{\Norb}{N_\text{orb}}
\newcommand{\Nocc}{O}
\newcommand{\Nvir}{V}
\newcommand{\IS}{\lambda}
@ -61,8 +62,11 @@
\newcommand{\hH}{\Hat{H}}
% methods
\newcommand{\KS}{\text{KS}}
\newcommand{\HF}{\text{HF}}
\newcommand{\RPA}{\text{RPA}}
\newcommand{\BSE}{\text{BSE}}
\newcommand{\GW}{GW}
% energies
\newcommand{\Enuc}{E^\text{nuc}}
@ -70,11 +74,7 @@
\newcommand{\EHF}{E^\text{HF}}
\newcommand{\EBSE}{E^\text{BSE}}
\newcommand{\EcRPA}{E_\text{c}^\text{RPA}}
\newcommand{\EcRPAx}{E_\text{c}^\text{RPAx}}
\newcommand{\EcBSE}{E_\text{c}^\text{BSE}}
\newcommand{\IP}{\text{IP}}
\newcommand{\EA}{\text{EA}}
\newcommand{\Req}{R_\text{eq}}
% orbital energies
\newcommand{\e}[1]{\epsilon_{#1}}
@ -160,6 +160,16 @@
\DeclareMathOperator*{\argmax}{argmax}
\DeclareMathOperator*{\argmin}{argmin}
% orbitals, gaps, etc
\newcommand{\eps}{\varepsilon}
\newcommand{\IP}{I}
\newcommand{\EA}{A}
\newcommand{\HOMO}{\text{HOMO}}
\newcommand{\LUMO}{\text{LUMO}}
\newcommand{\Eg}{E_\text{g}}
\newcommand{\EgFun}{\Eg^\text{fund}}
\newcommand{\EgOpt}{\Eg^\text{opt}}
\newcommand{\EB}{E_B}
\newcommand\vari{{\varepsilon}_i}
\newcommand\vara{{\varepsilon}_a}
@ -200,6 +210,25 @@ This is the abstract
\section{Introduction}
\label{sec:intro}
%%%%%%%%%%%%%%%%%%%%%%%%
The Bethe-Salpeter equation (BSE) formalism \cite{Salpeter_1951,Strinati_1988} is to the $GW$ approximation \cite{Hedin_1965,Golze_2019} of many-body perturbation theory (MBPT) \cite{Martin_2016} what time-dependent density-functional theory (TD-DFT) \cite{Runge_1984,Casida_1995} is to Kohn-Sham density-functional theory (KS-DFT), \cite{Hohenberg_1964,Kohn_1965} an affordable way of computing the neutral excitations of a given electronic system.
In recent years, it has shown to be useful for molecular systems with a large number of systematic benchmark studies appearing in the scientific literature \cite{Korbel_2014,Jacquemin_2015a,Bruneval_2015,Jacquemin_2015b,Hirose_2015,Jacquemin_2017,Krause_2017,Gui_2018} (see Ref.~ \onlinecite{Blase_2018} for a recent review).
Taking the optical gap (\ie, the lowest optical excitation energy) as an example, BSE builds on top of a $GW$ calculation by adding up excitonic effects $\EB$ to the $GW$ HOMO-LUMO gap
\begin{equation}
\Eg^{\GW} = \eps_{\LUMO}^{\GW} - \varepsilon_{\HOMO}^{\GW},
\end{equation}
which is itself a corrected version of the Kohn-Sham (KS) gap
\begin{equation}
\Eg^{\KS} = \eps_{\LUMO}^{\KS} - \varepsilon_{\HOMO}^{\KS} \ll \Eg^{\GW} < \EgFun,
\end{equation}
in order to approximate the optical gap
\begin{equation}
\EgOpt = E_1^{\Nel} - E_0^{\Nel} = \EgFun + \EB,
\end{equation}
where $\EgFun = I^\Nel - A^\Nel$ is the the fundamental gap, \cite{Bredas_2014} $I^\Nel = E_0^{\Nel-1} - E_0^\Nel$ and $A^\Nel = E_0^{\Nel+1} - E_0^\Nel$ being the ionization potential and the electron affinity of the $\Nel$-electron system.
Here, $E_s^{\Nel}$ is the total energy of the $s$th excited state of the $\Nel$-electron system, and $E_0^\Nel$ corresponds to its ground-state energy.
Because the excitonic effect corresponds physically to the stabilization implied by the attraction of the excited electron and its hole left behind, we have $\EgOpt < \EgFun$.
%%%%%%%%%%%%%%%%%%%%%%%%
\section{Theory}