basis effects and TDA
This commit is contained in:
parent
816a48ea37
commit
158253f315
64
BSEdyn.tex
64
BSEdyn.tex
@ -69,6 +69,7 @@
|
||||
\newcommand{\GW}{GW}
|
||||
\newcommand{\stat}{\text{stat}}
|
||||
\newcommand{\dyn}{\text{dyn}}
|
||||
\newcommand{\TDA}{\text{TDA}}
|
||||
|
||||
% energies
|
||||
\newcommand{\Enuc}{E^\text{nuc}}
|
||||
@ -586,12 +587,12 @@ From a practical point of view, if one enforces the TDA, we obtain the very simp
|
||||
\label{eq:Om1-TDA}
|
||||
\Om{m}{(1)} = \T{(\bX{m}{(0)})} \cdot \bA{(1)}(\Om{m}{(0)}) \cdot \bX{m}{(0)}.
|
||||
\end{equation}
|
||||
This correction can be renormalized by computing, at basically no extra cost, the renormalization factor
|
||||
This correction can be renormalized by computing, at basically no extra cost, the renormalization factor which reads, in the TDA,
|
||||
\begin{equation}
|
||||
\label{eq:Z}
|
||||
Z_{m} = \qty[ 1 - \T{(\bX{m}{(0)})} \cdot \left. \pdv{\bA{(1)}(\omega)}{\omega} \right|_{\omega = \Om{m}{(0)}} \cdot \bX{m}{(0)} ]^{-1},
|
||||
Z_{m} = \qty[ 1 - \T{(\bX{m}{(0)})} \cdot \left. \pdv{\bA{(1)}(\omega)}{\omega} \right|_{\omega = \Om{m}{(0)}} \cdot \bX{m}{(0)} ]^{-1}.
|
||||
\end{equation}
|
||||
which finally yields
|
||||
This finally yields
|
||||
\begin{equation}
|
||||
\Om{m}{\text{dyn}} = \Om{m}{\text{stat}} + \Delta\Om{m}{\text{dyn}} = \Om{m}{(0)} + Z_{m} \Om{m}{(1)}.
|
||||
\end{equation}
|
||||
@ -637,6 +638,38 @@ All the BSE calculations have been performed with our locally developed $GW$ sof
|
||||
\label{sec:resdis}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
%%% TABLE I %%%
|
||||
\begin{table*}
|
||||
\caption{
|
||||
Excitation energies (in eV) of \ce{N2} at the BSE@{\GOWO}@HF level for various basis sets.
|
||||
\label{tab:N2}
|
||||
}
|
||||
\begin{ruledtabular}
|
||||
\begin{tabular}{lddddddddd}
|
||||
& \mc{3}{c}{aug-cc-pVDZ ($\Eg^{\GW} = 19.49$ eV)}
|
||||
& \mc{3}{c}{aug-cc-pVTZ ($\Eg^{\GW} = 19.20$ eV)}
|
||||
& \mc{3}{c}{aug-cc-pVQZ ($\Eg^{\GW} = $ eV)} \\
|
||||
\cline{2-4} \cline{5-7} \cline{8-10}
|
||||
State & \tabc{$\Om{m}{\stat}$} & \tabc{$\Delta\Om{m}{\dyn,\TDA}$} & \tabc{$\Delta\Om{m}{\dyn}$}
|
||||
& \tabc{$\Om{m}{\stat}$} & \tabc{$\Delta\Om{m}{\dyn,\TDA}$} & \tabc{$\Delta\Om{m}{\dyn}$}
|
||||
& \tabc{$\Om{m}{\stat}$} & \tabc{$\Delta\Om{m}{\dyn,\TDA}$} & \tabc{$\Delta\Om{m}{\dyn}$} \\
|
||||
\hline
|
||||
$^1\Pi_g(n \ra \pis)$ & 10.18 & -0.41 & -0.43 & 10.42 & -0.42 & -0.40 & & & \\
|
||||
$^1\Sigma_u^-(\pi \ra \pis)$ & 9.95 & -0.44 & -0.44 & 10.11 & -0.45 & -0.45 & & & \\
|
||||
$^1\Delta_u(\pi \ra \pis)$ & 10.57 & -0.41 & -0.40 & 10.75 & -0.42 & -0.41 & & & \\
|
||||
$^1\Sigma_g^+$(R) & 13.72 & -0.04 & -0.04 & 13.60 & -0.03 & -0.03 & & & \\
|
||||
$^1\Pi_u$(R) & 14.07 & -0.05 & -0.05 & 13.98 & -0.04 & -0.04 & & & \\
|
||||
$^1\Sigma_u^+$(R) & 13.80 & -0.08 & -0.08 & 13.98 & -0.07 & -0.08 & & & \\
|
||||
$^1\Pi_u$(R) & 14.22 & -0.04 & -0.03 & 14.24 & -0.03 & -0.03 & & & \\
|
||||
$^3\Sigma_u^+(\pi \ra \pis)$ & 9.21 & -1.01 & -0.71 & 9.50 & -1.04 & -0.73 & & & \\
|
||||
$^3\Pi_g(n \ra \pis)$ & 9.58 & -0.57 & -0.34 & 9.85 & -0.58 & -0.33 & & & \\
|
||||
$^3\Delta_u(\pi \ra \pis)$ & 9.97 & -0.92 & -0.58 & 10.19 & -0.95 & -0.36 & & & \\
|
||||
$^3\Sigma_u^-(\pi \ra \pis)$ & 10.71 & -0.81 & -0.68 & 10.89 & -0.82 & -0.30 & & & \\
|
||||
\end{tabular}
|
||||
\end{ruledtabular}
|
||||
\end{table*}
|
||||
|
||||
|
||||
%%% TABLE I %%%
|
||||
\begin{table*}
|
||||
\caption{
|
||||
@ -656,8 +689,8 @@ All the BSE calculations have been performed with our locally developed $GW$ sof
|
||||
\ce{H2O} & $^1B_1(n \ra 3s)$ & 13.58 & 8.09 & 8.00 & -0.09 & 1.007 & & & & & & 7.62 & 7.18 & 7.60 & 7.23 & 7.65 \\
|
||||
& $^1A_2(n \ra 3p)$ & & 9.79 & 9.72 & -0.07 & 1.005 & & & & & & 9.41 & 8.84 & 9.36 & 8.89 & 9.43 \\
|
||||
& $^1A_1(n \ra 3s)$ & & 10.42 & 10.35 & -0.07 & 1.006 & & & & & & 9.99 & 9.52 & 9.96 & 9.58 & 10.00 \\
|
||||
\ce{N2} & $^1\Pi_g(n \ra \pis)$ & 19.20 & 10.11 & 9.66 & -0.45 & 1.029 & & & & & & 9.66 & 9.48 & 9.41 & 9.44 & 9.34 \\
|
||||
& $^1\Sigma_u^-(\pi \ra \pis)$ & & 10.42 & 9.99 & -0.42 & 1.031 & & & & & & 10.31 & 10.26 & 10.00 & 10.32 & 9.88 \\
|
||||
\ce{N2} & $^1\Pi_g(n \ra \pis)$ & 19.20 & 10.42 & 9.99 & -0.42 & 1.031 & & & & & & 9.66 & 9.48 & 9.41 & 9.44 & 9.34 \\
|
||||
& $^1\Sigma_u^-(\pi \ra \pis)$ & & 10.11 & 9.66 & -0.45 & 1.029 & & & & & & 10.31 & 10.26 & 10.00 & 10.32 & 9.88 \\
|
||||
& $^1\Delta_u(\pi \ra \pis)$ & & 10.75 & 10.33 & -0.42 & 1.030 & & & & & & 10.85 & 10.79 & 10.44 & 10.86 & 10.29 \\
|
||||
& $^1\Sigma_g^+$(R) & & 13.60 & 13.57 & -0.03 & 1.003 & & & & & & 13.67 & 12.99 & 13.15 & 12.83 & 13.01 \\
|
||||
& $^1\Pi_u$(R) & & 13.98 & 13.94 & -0.04 & 1.004 & & & & & & 13.64 & 13.32 & 13.43 & 13.15 & 13.22 \\
|
||||
@ -726,6 +759,25 @@ All the BSE calculations have been performed with our locally developed $GW$ sof
|
||||
\end{ruledtabular}
|
||||
\end{table*}
|
||||
|
||||
%%% TABLE III %%%
|
||||
\begin{table}
|
||||
\caption{
|
||||
Excitation energies (in eV) of CN3 obtained with the aug-cc-pVDZ basis set at various levels of theory.
|
||||
%$\Eg^{\GW} = 13.79$ eV.
|
||||
\label{tab:CN3}
|
||||
}
|
||||
\begin{ruledtabular}
|
||||
\begin{tabular}{lcc}
|
||||
& \mc{2}{c}{Excitation} \\
|
||||
Method & $^1B_2(\pi \ra \pis)$ & $^3B_2(\pi \ra \pis)$ \\
|
||||
\hline
|
||||
BSE@{\GOWO}@HF & 7.66 & 6.52 \\
|
||||
dBSE(TDA)@{\GOWO}@HF & 7.51 & 6.11 \\
|
||||
FCI & 7.14 & 5.47 \\
|
||||
\end{tabular}
|
||||
\end{ruledtabular}
|
||||
\end{table}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Conclusion}
|
||||
\label{sec:conclusion}
|
||||
@ -735,7 +787,7 @@ This is the conclusion
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\acknowledgements{
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%PFL thanks the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No.~863481) for financial support.
|
||||
PFL thanks the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No.~863481) for financial support.
|
||||
This work was performed using HPC resources from GENCI-TGCC (Grant No.~2019-A0060801738) and CALMIP (Toulouse) under allocation 2020-18005.
|
||||
Funding from the \textit{``Centre National de la Recherche Scientifique''} is acknowledged.
|
||||
This work has also been supported through the EUR grant NanoX ANR-17-EURE-0009 in the framework of the \textit{``Programme des Investissements d'Avenir''.}}
|
||||
|
Loading…
Reference in New Issue
Block a user