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Long-range corrected hybrids represent an increasingly popular class of functionals for density func-
tional theory (DFT) that have proven to be very successful for a wide range of chemical applica-
tions. In this Communication, we examine the performance of these functionals for time-dependent
(TD)DFT descriptions of triplet excited states. Our results reveal that the triplet energies are par-
ticularly sensitive to the range-separation parameter; this sensitivity can be traced back to triplet
instabilities in the ground state coming from the large effective amounts of Hartree-Fock exchange
included in these functionals. As such, the use of standard long-range corrected functionals for the
description of triplet states at the TDDFT level is not recommended. © 2011 American Institute of
Physics. [doi:10.1063/1.3656734]

I. INTRODUCTION

Density functional theory (DFT) and its time-dependent
extension (time-dependent density functional theory;
TDDFT) have become the methods of choice for quantum-
mechanical applications in many areas of chemistry.
Recently, long-range corrected (LRC) hybrid functionals
have generated a significant amount of attention in the
literature.1 Indeed, they have been shown to improve upon
the standard hybrid functionals for numerous properties
of particular interest; examples include: fundamental gaps
and ionization potentials (IPs),2, 3 bond-length alternations
in π -conjugated materials,4 molecular polarizabilities
and hyperpolarizabilities,5 or vibrational frequencies and
IR/Raman intensities.6 Primarily, however, it is the outstand-
ing performance of LRC-hybrids for charge-transfer exci-
tations that makes this new class of functionals particularly
interesting for TDDFT applications in organic electronics.7–9

The central premise underlying all LRC functionals is a
separation of the Coulomb operator into short-range (SR) and
long-range (LR) components that can be treated separately.
For instance, a semilocal exchange-correlation functional can
be used for the SR and Hartree-Fock for LR. The most popular
approach to the range separation (and the one employed in this
work) is to partition the Coulomb operator via the standard
error function:

1

r
= erf (ωr)

r
+ erf c (ωr)

r
. (1)

The range-separation parameter ω determines the separa-
tion/partitioning of the SR and LR components. Initial work
in this area assumed a single, system-independent range-
separation parameter dependent only upon the underlying
exchange-correlation functional.10 However, recent work has
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revealed that ω should depend primarily on the electronic
structure of the system and only to a much lesser extent on
the particulars of the semilocal exchange-correlation func-
tional employed.11 In this work, as has been done previously
by others as well,2 we will use the “IP-tuning” to determine
the optimal range-separation parameter. This is done by min-
imizing the difference between the highest occupied orbital
eigenvalue and the computed ionization potential, i.e.,

�IP (ω) = ∣∣−εω
HOMO − (Egs (ω,N ) − Egs (ω,N − 1))

∣∣.

(2)

The range-separation parameters determined by minimization
of Eq. (2) have been shown to improve the description of
properties related to the IP and the fundamental gap for a
series of systems.2, 3 The IP-tuning procedure is completely
self-consistent and non-empirical as it simply requires that
the resultant generalized Kohn-Sham solution obey a prop-
erty that is identically satisfied for an exact Kohn-Sham (and
generalized Kohn-Sham) approach.

While a complete description of the TDDFT machin-
ery has been presented elsewhere,12–14 it is important to note
that linear-response TDDFT comprises a generalization of
ground-state DFT whereby the determination of the excita-
tion spectra can be reduced to the solution of an eigenvalue
problem. Casida et al.15 have shown that, for the case of a
simple two-state model system, the solutions to the TDDFT
equations for the singlet (S) and triplet (T) excitation energies
υS and υT simplify to

υS = √
�ε[�ε + 2(K↑,↑ + K↑,↓)], (3)

υT = √
�ε[�ε + 2(K↑,↑ − K↑,↓)]. (4)

Here, �ε denotes the difference in the occupied and vir-
tual orbital energies (this difference is always positive due
to the aufbau principle); K↑, ↑ and K↑, ↓ represent the same-
spin and opposite-spin occupied-virtual coupling matrix
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elements, respectively. Casida et al. underline that in the case
of a bond-breaking process, the triplet energy (υT) approaches
zero and eventually becomes imaginary and trace this back
to symmetry breaking in the ground-state wavefunction. By
analyzing the stability condition for the two-state model sys-
tem, these authors observe that the ground-state becomes un-
stable vs. symmetry breaking at the very point where [�ε

+ 2(K↑, ↑ − K↑, ↓)] becomes negative. Through Eq. (4),
it can be seen that this is identically the point where υT

becomes imaginary; thus, the term giving rise to symme-
try breaking in the ground state is also responsible for the
imaginary root corresponding to the triplet excitation in the
TDDFT equations. Casida et al. also show that, at least for
the two-state model, the triplet energies taken either from the
Tamm-Dancoff approximation16–18 or as the differences in
the self-consistent field (SCF) energies of the singlet and
triplet spin states (�SCF), are not affected by the symmetry-
breaking instability in the ground state. This conclusion will
be particularly relevant for understanding the results pre-
sented below.

The stability conditions both for HF (Refs. 19 and 20)
and DFT (Ref. 21) have been discussed previously, and a
description of the classes of instabilities has been formulated
by Cizek and Paldus.20 Here, we highlight a few concepts
that are essential to the present work. Solution of the SCF
equations (either in HF or DFT) ensures a vanishing first-
order variation in the energy functional with respect to orbital
rotations. However, convergence of the wavefunction to even
a local minimum requires positive definiteness of the molec-
ular orbital Hessian. If the Hessian is not positive definite,
i.e., it has at least one negative eigenvalue, then there exists
a lower energy SCF solution which may (or may not) break
some of the imposed restrictions upon the wavefunction.
Central to our work is the existence of instabilities breaking
the imposed spin symmetry of the wavefunction. These
arise when a spin-contaminated unrestricted Kohn-Sham
(UKS) or HF (UHF) solution can be found that is lower
in energy than the restricted closed-shell solution (RKS or
RHF, respectively); here, we will denote these instabilities as
RKS-UKS (or RHF-UHF) instabilities.

RKS-UKS (and RHF-UHF) instabilities are known to
occur often for systems far from equilibrium.15 HF is also
known to exhibit RHF-UHF instabilities in many systems
even at equilibrium. While the latter are largely corrected
at the DFT level, the amount of included exchange in any
hybrid-DFT approach can strongly impact the presence of
RKS-UKS instabilities.22 Of relevance to the results presented
here is that the large amounts of exchange included in stan-
dard LRC functionals can easily introduce RKS-UKS insta-
bilities in the electronic ground state of some molecules. As
is demonstrated below, the presence of these instabilities has
a significant impact on the description of triplet states with
these functionals.

In this Communication, we explore the nature of the or-
bital instabilities and the TDDFT description of the triplet
states in linear acenes for several LRC functionals. The de-
scription of the singlet excited states in these systems (espe-
cially for the 1La state) has proven challenging for many DFT
functionals, and it has been shown recently that the LRC func-

FIG. 1. Lowest RKS-UKS orbital Hessian eigenvalue from the BNL func-
tional as a function of the range-separation parameter for the linear acenes
(see chemical structure in inset). The vertical dashed line at ω = 0.5 bohr−1

indicates the values obtained with BNL using the default range-separation pa-
rameter. The points individually highlighted on each of the curves are those
obtained with the IP-optimized ω.

tionals provide for an improved description of these singlet
excitations.23–25 Given the growing popularity of these LRC
DFT approaches, our results should provide significant and
timely guidance into obtaining reliable triplet energies with
these functionals.

II. THEORETICAL METHODS

The geometries of the linear acenes for benzene through
pentacene (see inset of Figure 1 for chemical structures) were
completely optimized at the frozen-core MP2/cc-pVTZ level
using MOLPRO 2010.1.26 Single-point computations were
performed at the DFT/TDDFT level using QChem27 and the
same cc-pVTZ basis set. Several long-range corrected func-
tionals were employed, including LRC-BOP,28, 29 ωPBE,30

ωPBEh,30 ωB97,31 ωB97X,31 ωB97X-D,10 and BNL.32 In
all LRC functionals, both the default ω from the literature
as well as the IP-optimized ω obtained from Eq. (2) were
employed. In addition, computations were carried out with
the widely used standard hybrid functional B3LYP as well as
with HF theory. The singlet ground-state wavefunctions were
optimized via restricted Kohn-Sham computations and the
stability of the RKS wavefunctions was examined through di-
agonalization of the molecular orbital Hessian. TDDFT com-
putations were performed with each of the functionals for the
first excited singlet (S1) and triplet (T1) states, both with and
without the Tamm-Dancoff approximation.

III. RESULTS AND DISCUSSION

All linear acenes examined in this work exhibit RHF-
UHF orbital instabilities in the ground-state wavefunc-
tion with RHF-UHF Hessian eigenvalues (λ) ranging from
–0.025 hartree in benzene to –0.094 hartree in pentacene. The
complete results for each molecule are included in the sup-
plementary material.33 In all cases, the magnitude of the in-
stability (based on the absolute magnitude of the eigenvalue
corresponding to the RHF-UHF instability) increases with the
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size of the system. Thus, it should be expected that the exis-
tence (or absence) of RKS-UKS instabilities strongly depends
on the amount of HF exchange included in the functional.
This is highlighted in Fig. 1 where the lowest eigenvalue of
the RKS-UKS molecular orbital Hessian (λ) is plotted as a
function of the range-separation parameter (ω) for the linear
acenes using the LRC BNL functional. Increasing the ω value
implies the inclusion of a greater amount of HF exchange; in
the limit of ω → ∞, the functional includes 100% HF ex-
change.

The results obtained for the standard BNL functional,
which uses a ω of 0.5 bohr−1, are indicated by a vertical
line in Fig. 1. With the default range-separation parame-
ter, the closed-shell RKS ground-state wavefunction exhibits
an RKS-UKS instability for tetracene and pentacene, with
the RKS solution for anthracene very close to the instabil-
ity point. Interestingly, the IP-optimization of ω largely re-
moves the problems associated with the orbital instabilities
in the ground-state wavefunction. The IP-optimized ω-values
for each system are given as dots on the curves in Fig. 1.
The tuning of the range-separation parameter effectively re-
duces the amount of HF exchange with increasing system
size, and provides for a greater stability of the ground-state
wavefunction. It should be pointed out, however, that it is not
necessarily the case that the IP-optimized ω always provides
for a stable ground-state RKS wavefunction. Indeed, we have
found that with the optimized ωPBEh, for which we calculate
an optimized range-separation parameter of 0.157 bohr−1 in
the case of pentacene, there exists an RKS-UKS instability (λ
= –0.007 hartree). More importantly, the lack of an orbital in-
stability in the RKS reference does not preclude deficiencies
in the TDDFT description of the triplet state, as is demon-
strated below.

The occurrence of an RKS-UKS instability in the ground-
state wavefunction has been shown above, for the specific
case of the LRC functionals, to depend heavily on the amount
of HF exchange incorporated into the functional. As has
been underlined by Casida et al.15 the existence of an RKS-
UKS instability in the ground-state wavefunction manifests
itself in numerical difficulties in the full TDDFT descrip-
tion of the triplet state. In this instance, the eigenvalue cor-
responding to the TDDFT excitation from the ground state
to the first triplet state becomes imaginary. In fact, this has
been observed in the full TDDFT computations for tetracene
and pentacene when using the LRC functionals with the de-
fault range-separation parameter. While this occurs for the
full TDDFT and only for the triplet excitations, the Tamm-
Dancoff approximation (TDA) (through the neglect of the off-
diagonal blocks) does not suffer from these issues. The ef-
fect can be clearly observed in Fig. 2 where we present the
TDDFT and TDA-TDDFT results for the S1 and T1 states
of anthracene with the LRC BNL functional as a function
of the range-separation parameter. As can be seen readily
from the figure, the TDA introduces a nearly constant offset of
∼0.2 eV in the S1 state. In the limit of no HF exchange (ω
= 0), the TDDFT and TDA-TDDFT results for the triplet
state are nearly identical. However, unlike the results for
the singlet excitations, the TDDFT excitation for the triplet
state quickly diverges from the TDA-TDDFT result. This is

FIG. 2. TDDFT and TDA-TDDFT (and �SCF T1) excitation energies for
anthracene in a cc-pVTZ basis using the BNL functional as a function of the
range-separation parameter.

because, as ω increases, the ground state moves closer
to the instability; for anthracene, the instability occurs at
ω ∼ 0.55 bohr−1 and the TDDFT description of the triplet
state passes through zero at this point. As a consequence,
the TDDFT and TDA-TDDFT results start diverging long be-
fore the actual occurrence of the RKS-UKS instability in the
ground-state wavefunction; for the case of anthracene, the dif-
ference is already approaching 0.5 eV at ω = 0.3 bohr−1. This
divergence of the full TDDFT results will manifest itself in

FIG. 3. (Upper panel) Lowest RKS-UKS Hessian eigenvalue (λ) for the lin-
ear acenes as a function of the number of fused rings (n). (Lower panel) Ratio
of the full TDDFT triplet energy (T TDDFT

1 ) to the Tamm-Dancoff triplet en-
ergy (T TDA

1 ) for the same functionals.
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many applications as a strong sensitivity of the singlet-triplet
(S1-T1) splitting as a function of the range-separation param-
eter, even for cases where the ground-state RKS solution does
not exhibit an instability. This effect has been observed pre-
viously by us, for instance, in pentacene where the differ-
ence between the TDDFT T1 energy and the TDA-TDDFT T1

energy remains ∼0.5 eV even when using optimized range-
separation parameters.34

While (for simplicity of discussion) the results presented
above have been restricted to the LRC BNL functional, it
should be pointed out that the conclusions are completely gen-
eral and hold for the seven LRC functionals we have consid-
ered. In other words, the results are independent of the nature
of the semilocal exchange-correlation functional employed.
To illustrate this point, Fig. 3 displays the lowest RKS-UKS
Hessian eigenvalue as well as the ratio of the triplet ener-
gies computed from TDDFT and TDA-TDDFT. This ratio
should be near 1 but will approach zero as the full TDDFT
description of the triplet diverges (we set imaginary excitation
energies to zero). While the standard LRC-hybrids all show
instability in the ground state for tetracene and pentacene,
the IP-optimization stabilizes the ground state. However, even
with IP-optimized LRC-hybrids, the onset of the problems re-
lated to triplet instability can be clearly seen. Figure 3 also
shows that, in contrast to the standard LRC-hybrids, the per-
formance of the IP-optimized hybrids for the TDDFT triplet
energies is comparable to that of the widely used regular hy-
brid B3LYP.

IV. CONCLUSIONS

We have demonstrated that the large effective amounts
of exchange included in standard long-range corrected hy-
brid functionals result in RKS-UKS instabilities for the linear
acenes beyond anthracene. More importantly, the presence of
these instabilities or nearby instabilities in the ground-state
wavefunction leads to a possible divergence of the TDDFT
excitations for the lowest triplet states and a strong sensitiv-
ity to the exact value of the range-separation parameter. The
Tamm-Dancoff approximation is shown to remove this sensi-
tivity completely, as is the �SCF approach.

The IP-optimization of the range-separation parameter
is observed to prevent the RKS-UKS instability in most in-
stances, thus making the performance of the LRC-hybrids for
triplets comparable to standard hybrids such as B3LYP. In
general, however, the Tamm-Dancoff approximation and the
�SCF approach are the only recommended methods for com-
puting triplet energies with long-range corrected hybrid func-
tionals. Based upon the results presented here, triplet energies
from LRC-hybrids using a full TDDFT approach should be
considered with great care, in particular when employing the
standard range-separation parameter for large π -conjugated
systems.
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