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Ab Initio Calculation of Excitonic Effects in the Optical Spectra of Semiconductors
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An ab initio approach to the calculation of excitonic effects in the optical absorption spectra of
semiconductors and insulators is formulated. It starts from a quasiparticle band structure calculation
and is based on the relevant Bethe-Salpeter equation. An application to bulk silicon shows a substantial
improvement with respect to previous calculations in the description of the experimental spectrum, for
both peak positions and line shape. [S0031-9007(98)06130-4]
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Recent advances inab initio calculations, mostly den-
sity functional theory–local density approximation (DFT
LDA) applications, allow us to determine the ground sta
properties and the Kohn-Sham (KS) electronic structu
[1] for even complicated systems. In order to treat excite
states, realistic quasiparticle (QP) energies are then in g
eral obtained by applying self-energy corrections to th
KS energies, usually evaluated in theGW approximation
[2]. Excellent agreement of the resulting band structu
with experimental data has been found for a wide ran
of materials [3,4]. However, spectroscopic properties i
volving two-particle excitations are often only poorly de
scribed at this one-particle level. The main example
absorption spectroscopy, where a simultaneously crea
electron-hole pair interacts more or less strongly. As
consequence, in addition to bound exciton states whi
occur within the gap, the spectral line shape above t
continuous-absorption edge is distorted.

The reported qualitative agreement with experiment
many computed KS-LDA absorption spectra, obtaine
from one-electron transitions between KS states [5],
indeed due to a partial cancellation between two princip
errors: namely, the compensation of the large KS-LD
underestimation of the valence-conduction band gap, w
an overestimation of the absorption onset induced
calculating the dielectric function entirely within the one
particle picture. The situation often worsens when on
the first error is corrected by replacing the KS eigenvalu
with the realistic QP energies [6,7]. On the other han
going beyond the one-particle picture through inclusio
of local field and/or exchange-correlation effects withi
DFT-LDA in the calculation of the absorption spectrum
does generally not remove the observed discrepancy [
In fact, most of the residual error stems from the negle
of the electron-hole interaction.

Up to now, excitonic effects have been rarely calcu
lated from first principles. Some information about en
ergetic changes can be extracted from an LDA-bas
self-consistent-field (D-SCF) approach [9]. Large exci-
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tonic effects on the spectral properties have been calc
lated ab initio in the case of a small sodium cluster [6]
This approach has consequently been generalized with
calculation of the absorption onset for an infinite system
the Li2O crystal [10]. The calculation of the entire optica
spectrum of a solid, finally, still remains a major challeng
[11]. Quantitatively correct theoretical absorption spectr
are indeed needed as a reference for the interpretation
prediction of experimental results.

A paradigmatic case is bulk silicon, which is represen
tative for the group IV, III-V, and II-VI semiconductors.
These materials show qualitatively similar optical spectr
with two major structures at 3–5 eV. The first peak (E1)
has been interpreted as aM1 type critical point transition,
and the second peak (E2) as aM2 type one [13]. Theo-
retical work based on the one-electron approximatio
ranging from early empirical pseudopotential approach
[14] to ab initio DFT-LDA work [8], all yielded the same
qualitative result, i.e., an underestimation of theE1 peak
by as much as 50%, reducing it to a weak shoulder of th
generally overestimatedE2 peak. In order to go beyond,
Louie et al. [15] included local field effects in the calcu-
lation of the dielectric matrix. The resulting spectrum i
significantly improved at higher energies (above 15 eV
but not in the region of interest around 4 eV.

Several authors suggested that strong contributions
the E1 peak could arise from saddle point excitons [16
18]. Excitonic effects allowed them to explain the mea
sured temperature and pressure dependence of the
shape and the symmetry in wavelength modulation r
flectance spectra [17]. Until now, the most sophisticate
calculation of excitonic effects on the spectral line shap
of silicon was done by Hanke and Sham [18]. They pe
formed a semiempirical LCAO calculation, including lo-
cal field effects and the screened electron-hole attractio
As in Ref. [15], local field effects alone were shown to
transfer oscillator strength to higher energies and hence
increase the discrepancy with experiment at lower ene
gies. On the contrary, the electron-hole interaction shifte
© 1998 The American Physical Society
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the position of theE1 peak to lower energies, and almo
doubled its intensity, while the oscillator strength of th
higher energy peaks was decreased. The overall ag
ment with experiment was hence improved, and clear e
dence was given for the importance of excitonic effec
However, the final intensity ratio between theE1 andE2

peaks was reversed, in disagreement with the experim
tal spectrum. As pointed out by Wanget al. [13], the
reliability of semiempirical approaches is limited. For in
stance, there are important differences, already at the o
electron level, between the spectra of Refs. [15] and [1

In the ab initio framework, on the other hand, th
precision achievable for the computation of electron
spectra is in general still poor when compared with t
quality of calculated ground state properties. This wo
is aimed to shrink this gap, showing how a significa
improvement of theab initio calculation of absorption
spectra can be obtained.

The absorption spectrum is given by the imaginary p
of the macroscopic dielectric functioneM

eM svd ­ 1 2 lim
q!0

ysqdx̂G­0,G0­0sq; vd , (1)

where x̂sr, r0; vd ­ 2iSsr, r, r0, r0; vd. Ss1, 10; 2, 20d is
the part of the two-particle Green’s function whic
excludes the disconnected term2Gs1, 10dGs2, 20d, and
Gs1, 10d is the one-particle Green’s function [18]. Th
notation (1,2) stands for two pairs of space and tim
coordinates,sr1, t1; r2, t2d.

Following Ref. [18], we start from the Bethe-Salpet
equation forS,

Ss1, 10; 2, 20d ­ S0s1, 10; 2, 20d 1 S0s1, 10; 3, 30d

3 Js3, 30; 4, 40dSs4, 40; 2, 20d . (2)

Repeated arguments are integrated over. The t
S0s1, 10; 2, 20d ­ Gs10, 20dGs2, 1d yields the polarization
function of independent quasiparticlesx0, from which the
standard RPAeM is obtained. The kernelJ contains two
st
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contributions:

Js1, 10, 2, 20d ­ 2ids1, 10dds2, 20dys1, 2d

1 ids1, 2dds10, 20dWs1, 10d . (3)

Considering the first term in the calculation ofS is
equivalent to the inclusion of local field effects in th
matrix inversion of a standard RPA calculation. In o
der to obtain the macroscopic dielectric constant, the b
Coulomb interactiony contained in this term must, how-
ever, be used without the long range term of vanishi
wave vector [19]. When spin is not explicitly treated,y

gets a factor of 2 for singlet excitons. In the second ter
W is the screened Coulomb attraction between elect
and hole. It is obtained as a functional derivative of th
self-energy in theGW approximation, neglecting a term
G

dW
dG . This latter term contains information about th

change in screening due to the excitation, and is expec
to be small [20]. We limit ourselves to static screenin
since dynamical effects in the electron-hole screening a
in the one particle Green’s function tend to cancel ea
other [21], which suggests to neglect both of them.

In order to solve Eq. (2), we have to invert a four-poin
function. In Ref. [18] this has been possible due to t
use of a very limited basis set. In anab initio plane wave
calculation, such a procedure is clearly prohibitive, wh
plane waves are chosen as straightforward basis functio
Instead, the physical picture of interacting electron-ho
pairs suggests to use a basis of LDA Bloch function
cnsrd, expecting that only a limited number of electron
hole pairs will contribute to each excitation.

In this basis, x
sn1,n2d,sn3,n4d
0 ­ dn1,n3dn2,n4s fn2 2

fn1 dysEn2 2 En1 2 vd and, after solving forS, in the
case of static screening, Eq. (2) can be written as

Ssn1,n2d,sn3,n4d ­ sHexc 2 Ivd21
sn1,n2d,sn3,n4ds fn4 2 fn3 d , (4)

with
Hsn1,n2d,sn3,n4d
exc ­ sEn2 2 En1 ddn1,n3dn2,n4 2 is fn2 2 fn1d

3
Z

dr1

Z
dr0

1

Z
dr2

Z
dr0

2cn1 sr1dcp
n2

sr0
1dJsr1, r0

1, r2, r0
2dcp

n3
sr2dcn4 sr

0
2d . (5)
n
s

e

u

-
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I is the identity operator. The energiesEn are the
QP levels. Together with the above form ofx0 this
is consistent with the use of LDA wave functions a
updated energy denominators in the Green’s function u
to construct the self-energy in theGW calculation. Thefn

are Fermi-Dirac occupation numbers. We avoid to inv
the matrixsHexc 2 Ivd for each absorption frequencyv
by applying the identity

sHexc 2 Ivd21 ­
X
l,l0

jllM21
l,l0kl0j

sEl 2 vd
, (6)

which holds for a system of eigenvectors and eigenval
of a general, non-Hermitian matrix defined by
d
ed

rt

es

Hexcjll ­ Eljll . (7)

Ml,l0 is the overlap matrix of the (in general nonorthogo
nal) eigenstates ofHexc.

Equation (7) is the effective two-particle Schrödinge
equation which we solve by diagonalization. The explic
knowledge of the coupling of the various two-particle
channels, given by the coefficientsA

sn1,n2d
l of the state

jll in our LDA basis, allows us to identify the characte
of each transition. (This analysis would be much mor
cumbersome if a matrix inversion instead of the spectr
representation was chosen, as in Ref. [18].)
4511
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The macroscopic dielectric function in Eq. (1) is ob
tained as

eMsvd ­ 1 2 lim
q!0

ysqd
X
l,l0

M21
l,l0

X
n1,n2

kn1je
2iq?r jn2lAsn1,n2d

l

3
X

n3,n4

kn4je
1iq?r jn3lApsn3,n4d

l0

3
s fn4 2 fn3d
sEl 2 vd

. (8)

In practice, the KS eigenvalues and eigenfunctions fro
a DFT-LDA calculation serve as input to the evaluatio
of the RPA screened Coulomb interactionW and the
GW self-energyS. The KS eigenfunctions, together with
the QP energies andW , are then used in the exciton
calculation. Here each pair of indicessn1, n2d stands for a
pair of bands and one Bloch vectork in the Brillouin zone
(BZ), since we are interested in direct transitions only.

In principle, all combinations of bands should b
considered. It can, however, be shown exactly that on
pairs containing one filled and one empty LDA stat
contribute to (8). Still, the portion of the matrixHexc

to be considered is in general non-Hermitian, being of t
form [22]

H ­

µ
H sy1,c1d,sy2,c2d Hsy1,c1d,sc2,y2d

2Hpsy1,c1d,sc2,y2d 2Hpsy1,c1d,sy2,c2d

∂
.

The off-diagonal coupling matrices do not contain th
QP transition energies, but only the interaction elemen
which are much smaller in the case of silicon. Hence, w
neglect the latter and separate the Hamiltonian into tw
block-diagonal parts: the resonant contributions, whi
are active for positive frequencies, and the antireson
ones, only contributing to negative frequencies. Th
matrix of the resonant part by its own is Hermitian, an
we therefore obtain the simpler formula

eMsvd ­ 1 1 lim
q!0

ysqd

3
X
l

j
P

y,c;kky, kje2iqrjc, klAsy,c;kd
l j2

sEl 2 vd
. (9)

Equations (7) and (9) constitute a set of equatio
which has been frequently used in the non-ab initio
framework [20,24]. Here, it appears as a particul
approximation to the more general formula (8), with wel
definedab initio ingredients which are consistent with th
GW approach.

We evaluate expression (9) for bulk silicon. The DFT
LDA calculation is performed using norm-conservin
pseudopotentials [25], an energy cutoff of 15 Ry, and 2
specialk points in the BZ [26]. Next,GW corrections
to the KS band structure are obtained following th
approach of [27]. The quite smoothGW corrections are
interpolated for the denserk point mesh needed for the
absorption spectrum. We evaluate Eqs. (7) and (9) us
different sets containing up to 2048k points in the BZ.
In order to handle such large matrices, the symme
properties of the crystal are exploited. One has to
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very careful in doing so, since the spectrum turns out t
be extremely sensitive to any inconsistency in the phas
which may appear when wave functions are rotated
notably for degenerate bands. A safe way to proceed
to make only partial use of symmetry, considering only
those operations which form an Abelian subgroup of th
point group, and which altogether allow us to reconstruc
the whole zone from a corresponding reduced part. I
the case of silicon, we found it convenient to use the
180± rotations around thex and they axis, respectively.
These two operationsT allow us to break the equation
Hkk0

Ak0

­ EAk (band indices have been suppressed, an
repeated indices are summed over) into four equation
to be used for pointski in the reduced zone only.
These equations are of the formhkik

0
i
ak0

i ­ Eaki , where
hkik

0
i

­ Hkik
0
i 6 HkiTk0

i . The Ak are then reconstructed
from the reduced eigenvectorsaki . Moreover, we apply
time reversal and Hermiticity in order to accelerate the
calculation of the matrix elements.

A set with 864 k points in the full BZ is used
to check the various ingredients of our calculation, in
particular, the number of bands and the importance o
the off-diagonal elements of the inverse dielectric matrix
in the evaluation ofW . In the inset of Fig. 1, the
continuous line shows the results of a calculation with
four valence and four conduction bands, and the fu
e21. In the region of interest (below 4.5 eV), a six
bands calculation (four valence1 two conduction, dotted
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FIG. 1. Absorption spectra of Si. Inset: calculation according
to Eq. (9) with 864k points in the BZ, using eight bands
(continuous curve) or only six bands (dotted curve). Main
part: Calculation according to Eq. (9) with 2048k points in
the BZ, six bands and the diagonal approximation toe21:
with both electron-hole attraction and local field effects in the
Hamiltonian (continuous curve), inclusion of local field effects
alone (long-dashed curve) and RPA with QP shifts only (short
dashed curve). Experimental curve (dots) [28].
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line) appears to be sufficient. Neglecting the off-diagona
elements ofe21

GG0sqd yields an indistinguishable curve.
We then use six bands and the diagonale21 to compute
the spectrum with 2048k points in the full BZ. In the
main part of Fig. 1 the experimental spectrum (dotte
line) [28] is compared to (i) an RPA calculation [29]
taking into account only the QP shifts, but not the
excitonic or local field effects (short-dashed curve): th
result is, as generally observed, in great discrepancy w
experiment; (ii) a calculation including local field effects
[i.e., using Eq. (3) withW set to 0, long-dashed curve]:
the agreement is worsened, since the oscillator streng
is slightly shifted to higher energies and both theE1 and
E2 peaks are lowered, thus confirming previous finding
in the literature [15,18]; (iii) finally, the full calculation
including the electron-hole attraction (continuous curve
absolute intensities now agree well with experiment. Th
remaining slight overestimate is of the order of wha
has been predicted by Ref. [21] to be the contributio
of dynamical effects. More important, the peak position
and the relative intensity of the main structures are bo
in good agreement with experiment. Also the structur
at 3.8 eV, even though slightly overestimated due to
finite k point sampling, has been repeatedly confirmed i
theoretical and experimental work [30].

In conclusion, we have shown how excitonic effect
can be included in anab initio calculation of optical
absorption spectra of semiconductors. At the example
bulk silicon, we have demonstrated that good agreeme
with experiment can be obtained for a case where th
inclusion of self-energy and local field effects alone stil
gives rise to a rather poor theoretical spectrum. In th
context, bulk silicon is not particularly easy to handle
since the bottleneck of the calculation is the number ofk
points (high in silicon, due to large dispersion) and no
the energy cutoff. Even though, the computational effor
mostly stemming from diagonalization, is reasonable an
demands only a few hours on a Cray C98. The prese
work opens hence the way to first-principles calculation
of optical absorption spectra with a precision comparab
to that typically achieved in ground state calculations.
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