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Functions of Solids
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We present a new method for efficient, accurate calculations of many-body properties of periodic
systems. The main features are (i) use of a real-space/imaginary-time representation, (ii) avoidance of
any model form for the screened interaction W, (iii) exact separation of W and the self-energy P into
short- and long-ranged parts, and (iv) the use of novel analytical continuation techniques in the energy
domain. The computer time scales approximately linearly with system size. We give results for jellium
and silicon, including the spectral function of silicon obtained from the Dyson equation.

PACS numbers: 71.10.+x, 71.25.Cx, 71.25.Rk, 71.45.Gm

Many-body perturbation theories for condensed-matter
physics allow the Green's functions of a system of in-

teracting electrons to be formulated in terms of those of
a hypothetical similar system of noninteracting electrons
moving in an effective potential. The key quantity that
connects the two is the exchange-correlation self-energy
operator X. From the Green's functions, most proper-
ties of the system can be calculated, most notably the
quasiparticle energies, the spectral function, the electron
density, the momentum distribution, and the total en-

ergy. Such theories have usually been developed erst for
the homogeneous electron gas (jellium), whose transla-
tional symmetry makes two-point functions such as the
self-energy X(r, r') diagonal in a momentum representa-
tion P(k). Also, because experiments generally focus on
energy-dependent measurements, the natural representa-
tion of time dependence X(r = t —t') is in the energy
(or frequency) domain X(co), yielding the total function
$(k, co). In a periodic system the replacement of continu-
ous translational symmetry by discrete translational sym-
metry turns the functions into matrices Zoo (k, co), where
G and G' are reciprocal lattice vectors, and this is the rep-
resentation that has been used for practical calculations
[1,2].

Four observations form the starting point for our
method. First, the commonly used GW approximation
for the self-energy operator [3] (the first term in an itera-
tive solution of coupled equations relating the many-body
quantities) is a computationally expensive multidimen-
sional convolution in a momentum-energy representation,
but simply multiplicative when written in terms of space
and time,

g(r, r', r) = i G(r, r', r) W(r, r', r), (1)
where G is the one-particle Green's function and W the
screened Coulomb interaction. Second, quantities such
as g, W, and G, which contain much structure along the
real energy and time axes, may rigorously be analytically
continued to the imaginary energy (e.g. , Ref. [2]) or time
axis, where all the relevant information is presented in a
much smoother form. In particular, oscillatory quantities

Gp(r, r', ir) =- unocc

i g P„k(r—)P„*k(r')exp( —e„kr),
~~0,

(3)
where P„kand e„kare the LDA one-electron eigenfunc-
tions and eigenvalues; the zero of energy is taken at the
Fermi energy (or in an insulator at the center of the band

gap), and the sum is over occupied or unoccupied states
depending on the sign of ~. This may be evaluated con-
veniently by a band summation, and convergence is rapid
because of the real, decaying exponentials. After a basic
three-dimensional real-space grid has been chosen (with
spacing Ar), r runs over all grid points in the irreducible
wedge of the real-space unit cell, and r' runs over all
grid points (offset so as to exclude r' = r for numeri-
cal reasons) inside a sphere of radius R,„centered on r.

in real time become smooth, monotonic functions in
imaginary time or energy. Third, fast Fourier transform
(FFT) methods allow extremely efficient implementation
of a discrete Fourier transform to go between space and
momentum, and energy and time. Fourth, the self-energy
is known to go to zero as ~r —r'~ ~ ~, so that a finite
cutoff in ~r —r'~ may be used in numerical work.

The calculation of the screened Coulomb interaction R"

begins with the expression for the noninteracting density
response function

yp(r, r', r) = t'Gp(r, r', r)Gp(r', r, —r),
where Gp is the noninteracting Green's function. In our
work, as in most modern ab initio applications of many-
body perturbation theory, our "zeroth order" noninter-
acting system is that of the local-density approximation
(LDA) to density-functional theory (DFT), where ex-
change and correlation are described by a local potential.
We analytically continue Gp in its standard eigenfunction
expansion from real to imaginary energy, and then take
the Fourier transform from imaginary energy to imaginary
time, yielding

occ
i g l/t„k(r)li„"k(r')exp( —e„kr),

nk
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Similarly, the time grid is an equally spaced, offset grid
between ~~ „with spacing A7-. It is then a simple mat-
ter to form ~p according to Eq. (2).

In order to calculate the dielectric matrix e and
screened Coulomb interaction W, we take the six-
dimensional Fourier transform (6DFFT) [4] from (r, r')
to (k, G, G'), and the one-dimensional Fourier transform
(1DFFT) from imaginary time to imaginary energy, and
evaluate the expressions

e(k, ice) = 1 —vip(k, ice), W(k, ice) = ve '(k, ice),

(4)

where matrix multiplication in the subscripts (G, G') is
implied, and v is the bare Coulomb interaction vGGi(k) =
47rBGG /lk + Gl . (The above expressions correspond
to the random-phase approximation (RPA); an equally
practical alternative at this stage is the effective screened
Coulomb interaction W = v[1 —~p(v + K„)]', where
K„is the second derivative of the LDA exchange-
correlation energy, which has been argued to be a more
consistent choice within the assumptions of the GW
approximation [5,6].) After forming WcGi (k, i ar) we
take the 6DFFT back to the real-space representation,
and the 1DFFT to the imaginary-time domain. The
net computational effort is much reduced in comparison
with the usual techniques, primarily because the costly
double summation over k points and bands does not
appear. Furthermore, the need for plasmon-pole models
to represent the cu dependence of W is eliminated: The
FFT provides W simultaneously for a large number of
imaginary energies or times.

Although we actually require W at the imaginary times
that this provides, we note that an alternative at this
stage, should W be required at real energies, would be
to analytically continue from the imaginary cu axis to the
real co axis. There is already some experience of the
reliability of analytic continuation of W in the co plane
[7], and our novel continuation techniques for X below
are also applicable to W because of the similar analytic
structure of W and X.

The screened Coulomb interaction is, of course, rela-
tively long ranged: At large distances the limiting be-
havior of all elements (with the sole exception of the
zero-frequency screening in a metal) is proportional to
1/lr —r'l. In order to avoid problems in the 6DFFT as-
sociated with the long-range tail and in the 1DFFT as-
sociated with the asymptotic frequency dependence, we
write (without loss of generality)

vector behavior of W in reciprocal space which allows the
long-ranged part to be accommodated for each ~, leaving
the exact remainder Wq short ranged. The factor of i in
the bare interaction simply reflects our Fourier transform
convention for imaginary time. The explicit separation of
the bare interaction also makes Wq well behaved for small
lr —r'l, where there can be no screening.

We calculate X using the GW approximation (I) di-
rectly in real space and imaginary time. With W split
according to (5), X splits into a bare exchange part,
a long-ranged term with multiplicative screening, and a
short-ranged term [8]. The first two terms are easily
evaluated (and, incidentally, account for about 90% of the
self-energy). The main computational effort is accounted
for by the remaining term.

To calculate quasiparticle energies we form the ex-
pectation values (P„kl[X(ir) —V„,] lP„k)directly in real
space (where V„,is the LDA exchange-correlation po-
tential). Alternatively, if the full self-energy operator is
required, we take the 6DFFT to obtain Roc (k, ii). In
either case we next take the Fourier transform from imag-
inary time to imaginary energy, and may then analytically
continue to the real energy axis by first using optimization
techniques to fit each element (separately for positive and
negative energies) to the multipole form

with complex parameters a; and b, , which (with n = 2)
we find to be an extremely stable and accurate fit (rms
relative error 0.2%) along the imaginary axis (and, for
jellium, in good agreement with directly computed results
along the whole of the real axis). The functional form is
motivated by the known positions of the branch cuts and
the character of the resonant structure in the self-energy.
In principle it is necessary to constrain the pole positions
b; to avoid the quadrant of the cu plane through which the
function is being continued, but in practice the optimal
fit is always found to satisfy the constraint automatically.
Sufficient numerical stability and information content
are available to allow considerable extension of this
functional form should this be desired, but i'n the present
calculations it has not proved necessary.

If the Green's function is required, such as for a cal-
culation of the momentum distribution or charge density,
we instead retain X in an imaginary-energy representa-
tion Xcc (k, ice) without the need for analytic continua-
tion, and solve the matrix Dyson equation

W(r, r', ir) =
, i ~(~) + g(lr —r'l)f (i r) G(k, i pr) = Gp(k, ice) + Gp(k, ice) [X(k, iv)) —V«]

X G(k, ia)), (7)
+ Wq(r, r', i7), (5)

where g(R) is the Yukawa function [1 —exp( —R/A)]/R
with the correct 1/R asymptotic dependence (with A =
1 a.u. ), and f is a function determined by the small-wave-

for G using matrix inversion. G may then be integrated as
appropriate using contour deformation techniques in the
~ plane, for example, to obtain the momentum distribu-
tion n(k), or the electron density n(r) (in which case a



VOLUME 74, NUMBER 10 PH YS ICAL REVIEW LETTERS 6 MARcH 1995

6DFFT to real space is taken first). We also obtain the
spectral function

1
&co'(k, ru) = —limGQQ'(k, a~) I

at real energies by analytic continuation from the
imaginary-ru axis using the functional form (6), as used
above for g.

We tested our method for jellium (where exact results
at the level of GW are simple to calculate for comparison)
and silicon. The jellium calculations show the method
to yield the correct results (e.g. , for quasiparticle ener-
gies, spectral function, and momentum density), and con-
vergence with respect to the key FFT parameters (Ar,
Ar, R,„,and r,„)is very satisfactory. Typical val-
ues are Ar = 0.5 a.u. , A7. = 0.3 a.u. , R „=18 a.u. , and
7. ,„=10 a.u. , which give convergence of differences of
self-energies (and therefore of quasiparticle energy dif-
ferences) to better than 0.05 eV and absolute values to
better than 0.1 eV. In Fig. 1 we give a comparison be-
tween the self-energy for real energies and for imaginary
energies. As explained, the quantity for imaginary en-

ergy shows less structure and is much more convenient to
handle numerically. Nevertheless all relevant informa-
tion is retained, as shown by the fact that our analytic
continuation techniques allow the full details of the self-
energy for real energies [Fig. 1(b)] to be regained. The
full results for jellium, which give further insight into the
properties of the analytically continued quantities, will be
presented in a future paper [9] together with details of the
numerical methods.

In the other figures we give results for silicon in the dia-
mond structure (a = 5.432 A), where the Green's func-
tion and screened Coulomb interaction are constructed
from LDA wave functions and eigenvalues calculated us-
ing an ab initio norm-conserving pseudopotential. Tests
show the above values of the FFT parameters to re-
main appropriate for silicon (the insensitivity of the FFT
parameters to the material is discussed further below).
Figure 2 shows the matrix element of the self-energy op-
erator of silicon for real energies (tk, k~2(ai)~g„k) contin-
ued from the imaginary axis using (6). Plasmon damping
at high and low energies is clearly visible. The inset il-
lustrates the excellent quality of the fit (6) along the imag-
inary axis. In Fig. 3 we show the spectral function of
silicon. The sharp peaks, which are automatically prop-
erly renormalized, correspond to the quasiparticle ener-
gies (and are in excellent agreement with both the quasi-
particle energies calculated directly from the self-energy
operator, with experiment, and with conventional GR'
calculations [1,2]) [10], while the remainder of the func-
tion corresponds to the well-known spectral background,
and includes contributions from plasmons. We are not
aware of any comparable calculations of the functions dis-
played for silicon. The calculations currently take 60 min
per imaginary time on a Cray Y-MP for the full WoG (k),
and 20 min per time for the full XGoi(k). The calculation
of the full self-energy X,oo~(k, cu) over an energy range
of 100 eV takes less than half the time of a conventional
technique using a plasmon-pole model for 8', which is at
best valid only for a much smaller energy range. Full ex-
ploitation of the short-ranged character of Wq would, we
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FIG. 1. (a) The GW self-energy of jellium (with density
parameter rz = 2) for imaginary energies, calculated using our
method [and displayed here as its imaginary part, ImX(k, ice)]
(b) The imaginary part of the same quantity analytically
continued to the real-cu axis, ImX(k, cu). The relative numerical
simplicity of (a) is evident, but all relevant information is
retained, as shown by (b), which is in excellent agreement with
direct calculations. In each plot ten contours are used, from —3
(black) to 3 eV (white) in (a), and from —15 to 15 eV in (b).
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FIG. 2. The matrix element of the self-energy operator
of silicon continued as described onto real energy axis
Re(/„kIX(cu)Itk„k) shown for the first 8 bands at k = 0. The
deviation from a linear function is crucial in obtaining accurate
quasiparticle energies away from the band gap (whose center
is at zero). Inset: The calculated quantity along the imaginary
energy axis Re{tk„kIX(ice)If„k)for band 4 (the valence band
maximum), together with the form (6) (with two poles)
subsequently used to continue to the real axis; the fit is seen to
be excellent.
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FIG, 3 The spectral function (p„k~2(r,r', cu)~p„k) of silicon,
for several bands at k = (1, 1, 1)vr/4a The .renormalized
quasiparticle poles are evident as sharp peaks, whose calculated
weights (the renormalization factors Z) are given. The spectral
background, which includes contributions from plasmons, is
also visible.

are in marked contrast to conventional techniques, which
usually involve N2 double summations over bands and
k points and typically scale as N4.

In conclusion, we presented a new formulation of ab
initio computational many-body perturbation theory for
solids which gives greatly improved efficiency in the
calculation of dielectric matrices, self-energy operators,
Green's functions, quasiparticle energies, spectral func-
tions, charge densities, etc. The computational cost of
this method scales approximately linearly with the system
size, which allows the routine extension of ab initio work
beyond calculations of quasiparticle energies, and its ap-
plication to materials requiring larger basis sets or larger
unit cells than were previously feasible.

This work was supported by the Science and Engi-
neering Research Council, The Royal Society, and the
European Community programme Human Capital and
Mobility (Contract No. CHRX-CT93-0337).

estimate, yield a further saving of at least 50%, and scal-
ing to larger systems is very favorable as discussed below.

The new method opens new prospects for the appli-
cations of ab initio many-body perturbation theory. First,
the improved computational efficiency of the various parts
of the calculation, together with the elimination of the
need for plasmon-pole models for W, allow larger and
more complex unit cells to be studied. Second, the exis-
tence of an efficient way of solving the Dyson equation to
obtain the next-level Green's function G [Eq. (7)] raises
the possibility of going beyond the GR' approximation to
treat more strongly correlated electrons by including the
vertex function I (which is approximated as a delta func-
tion at the GW level). One simple way in which this may
be done has been mentioned above [5,6]; we are explor-
ing the possibility of a more general I in which our real-
space grid will be used to exploit its expected short-ranged
character.

For large unit cells, the dependence of the total com-
puter time on the number of basis functions N becomes
crucial ~ The most important point is that the range of
the nonlocality of W or X appears to be approximately
the same in all materials [11], and the length scale of
the short-range behavior is set by atomiclike quantities, so
that R „andAr need not change with N. Similarly the
imaginary-time grid used for silicon is capable of repre-
senting much structure, so that A~ and ~,, do not change
significantly with N. The information stored is therefore
linear in N, since the number of r points (which run over
the irreducible wedge of the unit cell, as opposed to the
r' points which run over the sphere of radius R,„)is pro-
portional to N. Consequently the time for all the cal-
culations performed using this representation, which are
dominated by FFT s, will scale with system size approxi-
mately merely as N [12]. If the basis set is changed for a
given system size, the time scales as N . These scalings

'
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