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A variety of approaches are presented for the computation of atomic and molecular correlation energies
based on the Bethe–Salpeter equation in the framework of the adiabatic-connection fluctuation–
dissipation theorem. The performance of the approaches is assessed by computing the total energies
of the atoms H−−Ne and the atomization energies of the high-accuracy extrapolated ab initio ther-
mochemistry set of small molecules as well as by determining the bond lengths and harmonic
vibrational frequencies of the metal monoxides MO with M==Ca−−Zn. Published by AIP Publishing.
https://doi.org/10.1063/1.5047030

I. INTRODUCTION

In the present work, we are concerned with the calculation
of correlation energies in the framework of the adiabatic-
connection fluctuation–dissipation theorem in the context of
the Bethe–Salpeter equation (BSE) and its variants.

The Bethe–Salpeter equation has been used extensively in
solid-state physics to calculate optical properties of solids.1,2

Recently, methods based on the BSE have also become popular
tools for the computation of atomic and molecular electronic
excitation energies. See, for example, Ref. 3 for a comprehen-
sive review of recent BSE applications in the area of quantum
chemistry.

Last year, in view of its success, the BSE approach was
implemented in the Turbomole program package4,5 by Krause
and Klopper,6 and shortly thereafter, the performance of the
BSE approach for the computation of singlet and triplet exci-
tation energies of small molecules was carefully assessed by
Gui and co-workers7 with respect to the quasiparticle (QP)
energies used in the BSE calculations. In their GW com-
putations, quasiparticle energies were computed at various
levels of sophistication for all orbital levels from full spectral
functions.7

In 2016, Maggio and Kresse used the Bethe–Salpeter
equation to compute the electron-correlation energy of
the homogeneous electron gas in the framework of the
adiabatic-connection fluctuation–dissipation theorem.8 To
avoid the occurence of imaginary eigenmodes, an approxi-
mation to the BSE kernel was proposed that was referred to

a)Author to whom correspondence should be addressed: klopper@kit.edu

as “random phase approximation with screened exchange”
(RPAsX).

These two approaches are just two examples of random
phase-approximation (RPA) methods. A series of such meth-
ods have been proposed in recent years for the computation of
electron-correlation energies of atomic and molecular systems
(for a presentation of many of these variants, see Refs. 9–14),
and the purpose of the present work is to assess the perfor-
mance of Maggio and Kresse’s BSE and RPAsX approaches
in cases where these are applied to atomic or molecular sys-
tems, for example, with respect to computations of atomic total
energies, atomization energies of small organic molecules, or
potential curves of diatomic molecules. For this purpose, the
BSE and RPAsX approaches (and many more) were imple-
mented in the Turbomole program package4,5 in the course of
the present work, on the basis of the BSE implementation of
Ref. 6 and the GW implementation of Ref. 7.

The present paper is organized as follows: in Sec. II A,
we start by recapitulating the direct random phase approxima-
tion (dRPA), where “direct” refers to the fact that exchange
contributions are not taken into account. In Sec. II B, we intro-
duce exchange contributions by inserting antisymmetrized
two-electron integrals into the orbital-rotation matrices when
computing the two-particle density matrix, as done in Ref. 15.
Maggio and Kresse’s BSE and RPAsX approaches are obtained
by inserting (static) screened exchange integrals in place of
pure exchange integrals. In Sec. II C, we closely follow Ref. 14
for the construction of a few more approaches by inserting
exchange integrals into the interaction kernel. Section II D is
concerned with approaches in the framework of ring-coupled-
cluster theory. Computational details needed to reproduce
the results of the present work are given in Sec. III, and
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numerical results are presented in Sec. IV with respect to the
total energies of the atoms H−−Ne, the atomization energies of
the HEAT (“high-accuracy extrapolated ab initio thermochem-
istry”) test set,16 and the bond lengths and harmonic vibrational
frequencies of 3d transition-metal monoxides. Conclusions are
collected in Sec. V.

II. THEORY
A. Direct random-phase approximation

In the direct random-phase approximation (dRPA), the
correlation energy is obtained by integration over the coupling-
strength parameter λ within the framework of the adiabatic
connection,10

EdRPA
c =

1
2

∫ 1

0
tr(KPλ)dλ, (1)

where the interaction kernel K is given by14,17–19

K = *
,

A′ B

B∗ A′∗
+
-
, (2)

with

A′ia,jb = via,jb = 〈ib|aj〉

=

∫∫
ϕ∗i (x1)ϕ∗b(x2)r−1

12 ϕa(x1)ϕj(x2)dx1dx2 (3)

and

Bia,jb = via,bj = 〈ij |ab〉

=

∫∫
ϕ∗i (x1)ϕ∗j (x2)r−1

12 ϕa(x1)ϕb(x2)dx1dx2. (4)

Note that the matrix A′ is Hermitian, while the matrix B is
symmetric, which makes K Hermitian. Furthermore, we note
that the two matrices A′ and B are only equal when real-
valued spin orbitals are used. These matrices are not equal
when complex-valued spin orbitals or spinors are used, as they,
for example, occur in quasirelativistic two-component calcu-
lations including spin–orbit effects or in calculations on atoms
and molecules in finite magnetic fields.

The Hermitian matrix

Pλ = *
,

YλY†λ YλX†λ
XλY†λ XλX†λ

+
-

∗

− *
,

0 0

0 1
+
-
, (5)

which is the correlation part of the two-particle density matrix
at coupling strength λ, is obtained from solving the following
non-Hermitian eigenvalue problem at coupling strength λ:

*
,

Aλ Bλ

−B∗λ −A∗λ
+
-
*
,

Xλ Y∗λ
Yλ X∗λ

+
-
= *
,

Xλ Y∗λ
Yλ X∗λ

+
-
*
,

ωλ 0

0 −ωλ
+
-
. (6)

The two-particle density matrix Pλ is related to the polarization
propagator Πλ via the fluctuation–dissipation theorem,

Pλ = −
1

2πi

∫ ∞
−∞

eiω0+
[Πλ(ω) −Π0(ω)]dω. (7)

In Eq. (6), the eigenvalues are (approximate) excitation and
de-excitation energies of the atom or molecule, and the
matrices Aλ and Bλ are given by

(Aλ)ia,jb = ∆ia,jb + λA′ia,jb, (8)

(Bλ)ia,jb = λBia,jb, (9)

where∆ia,jb = (εa − εi)δijδab. Here, the εp are orbital or quasi-
particle energies of the canonical spin orbitals ϕp. We denote
occupied spin orbitals by i, j, k, . . . and virtual spin orbitals by
a, b, c, . . ..

The eigenvectors of Eq. (6) are normalized to

X†λXλ − Y†λYλ = 1, (10)

and the working equation for the dRPA integrand reads

tr(KPλ) = tr
(
X†λBYλ + Y†λB∗Xλ

)
+ tr

(
X†λA′Xλ + Y†λA′∗Yλ

)
− tr

(
A′

)
. (11)

This trace is real-valued since the matrices K and Pλ are
Hermitian.

B. Exchange in the polarization propagator

Next we introduce exchange contributions by defining
matrices with “antisymmetrized” two-electron integrals. As
in Ref. 15, we indicate these matrices by an overbar,(

Aλ
)

ia,jb
= ∆ia,jb + λvia,jb − λvij,ab, (12)(

Bλ
)

ia,jb
= λvia,bj − λvib,aj. (13)

Based on these matrices, the RPA exchange (RPAx) correlation
energy is given by20,21

ERPAx
c =

1
2

∫ 1

0
tr
(
KPλ

)
dλ, (14)

where Pλ is obtained from solving Eq. (6) using Aλ and Bλ in
place of Aλ and Bλ.

The Bethe–Salpeter correlation energy as defined in Ref. 8
is given by an expression very similar to Eq. (14), the only
difference being that the exchange terms in Eqs. (12) and
(13) are replaced by their static screened counterparts. Corre-
spondingly, the Bethe–Salpeter correlation energy is obtained
from

EBSE
c =

1
2

∫ 1

0
tr
(
KPλ

)
dλ, (15)

where Pλ is obtained from solving Eq. (6) using Aλ and Bλ in
place of Aλ and Bλ,(

Aλ
)

ia,jb
= ∆ia,jb + λvia,jb − λwij,ab, (16)(

Bλ
)

ia,jb
= λvia,bj − λwib,aj. (17)

In Eqs. (16) and (17), w refers to integrals over the static
screened interaction. As in Ref. 6, these integrals are computed
in the resolution-of-the-identity (RI) approximation,

wpq,rs =
∑
PQ

Rpq,P

(
ε−1

)
PQ

R∗Q,rs (18)

with

εPQ = δPQ − 2<
∑
kc

R∗P,kcRkc,Q

εk − εc
, (19)
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where< denotes the real part. Here, the indices p, q, r, . . . refer
to arbitrary spin orbitals, while the indices P, Q, R, . . . refer to
functions of the (real-valued) auxiliary basis set. The integrals
R are the usual three-index intermediate quantities that occur
in methods based on the RI approximation (see Ref. 6 for
details).

In Ref. 8, the RPAsX approximation (random-phase
approximation with screened exchange) was proposed to
resolve problems due to instabilities originating from particle–
hole diagrams. In this RPAsX approximation, the term−λwij,ab

in Eq. (16) is omitted.
Furthermore, we note that instead of multiplying the final

integral w with the coupling-strength parameter λ, as done in
Ref. 8, the concept of coupling-strength integration implies
that at coupling strength λ, the two-electron integrals need to
be scaled by λ. After some straightforward manipulation, one
can show that the screened interaction w at coupling strength
λ is given by the following equations:

(ελ)PQ = δPQ − 2λ<
∑
kc

R∗P,kcRkc,Q

εk − εc
, (20)

wλpq,rs =
∑
PQ

Rpq,P

(
ε−1
λ

)
PQ

R∗Q,rs, (21)

and (
Ãλ

)
ia,jb
= ∆ia,jb + λvia,jb − λw

λ
ij,ab, (22)(

B̃λ
)

ia,jb
= λvia,bj − λw

λ
ib,aj. (23)

The corresponding correlation energy, which we denote as
the extended Bethe–Salpeter (XBS) correlation energy, is then
given by

EXBS
c =

1
2

∫ 1

0
tr
(
KP̃λ

)
dλ. (24)

Equations (20)–(24) were straighforward to implement in
the Turbomole program package. The previously applied
Eqs. (18) and (19) are obviously an approximation, which is
only exact at small λ.

We note that the corresponding XBSsX correlation energy
is obtained by omitting the term −λwλij,ab in Eq. (22).

C. Exchange in the interaction kernel

More energy expressions can be generated by replac-
ing the matrix K in Eqs. (1), (14), (15), and (24) by its
“antisymmetrized” counterpart K. For example, by making
this replacement in Eq. (1), the dRPA-II correlation energy
of Ángyán et al. is obtained,14,17 which is closely related
to the adiabatic-connection second-order screened exchange
(AC-SOSEX) correlation energy,

EdRPA-II
c =

1
2

∫ 1

0
tr
(
KPλ

)
dλ. (25)

The AC-SOSEX correlation energy refers to the dRPA-IIa
approximation defined by Eq. (59) of Ref. 14.

In the spirit of Eq. (25), it seems also worthwhile to
investigate the corresponding expression using the interac-

tion kernel K̃ = K, where the antisymmetric (exchange-like)

contribution is evaluated with the static screened exchange w
at full coupling (λ = 1) instead of v . The correlation energy is
then defined as

EIOSEX
c =

1
2

∫ 1

0
tr
(
K̃Pλ

)
dλ. (26)

We denote this new approach as the IOSEX (infinite-order
screened exchange) approach.

Furthermore, we have also investigated correlation-
energy expressions in which only the matrix B is inserted into
Eq. (11) in an antisymmetrized (and possibly screened) form.
This resembles the “sX” approximation of Ref. 8, and we there-
fore denote the corresponding approaches by the ending “sX.”
For example, we define the dRPA-IIsX correlation energy
as

EdRPA-IIsX
c =

1
2

∫ 1

0
tr
(
KsXPλ

)
dλ (27)

with

KsX = *
,

A′ B

B∗ A′∗
+
-
. (28)

The IOSEXsX correlation energy is defined analogously in
terms of a matrix K̃sX that contains B̃.

D. Ring-coupled-cluster theory

At this point, we note that it is also possible to define
the second-order screened exchange correlation energy in the
framework of the direct ring-coupled-cluster-doubles (drCCD)
approach, which is equivalent to the dRPA method. We refer
to this drCCD-based variant as the coupled-cluster second-
order screened exchange (CC-SOSEX) correlation energy.22

It is defined as

ECC-SOSEX
c =

1
2

tr
(
BY1X−1

1

)
. (29)

Analogously, we define the coupled-cluster infinite-order
screened exchange (CC-IOSEX) correlation energy as

ECC-IOSEX
c =

1
2

tr
(
B̃Y1X−1

1

)
. (30)

E. Overview over all methods

An overview over the abovementioned methods is given
in Table I. Here and in the following, we use blackboard
bold characters to represent any of the matrices given in
Secs. II A–II D. With respect to the integrand tr(KPλ) entering
the coupling-strength integration, one needs to ask the follow-
ing questions: first, how does one construct the matrices A′
and B to set up K; second, how does one construct the matri-
ces A′λ and Bλ that are used to build Pλ; and third, whether
to use Kohn–Sham orbital energies (OE) or GW quasiparti-
cle energies. For all methods without a prime summarized in
Table I, the screened exchange w in the A′ and B matrices for
the interaction kernel K and in the A′λ and Bλ matrices for the
polarization propagator are calculated using GW quasiparticle
energies. A prime is attached to the method’s acronym if Kohn–
Sham orbital energies are used for the diagonal matrix ∆ in
place of GW quasiparticle energies. When Kohn–Sham orbital
energies are used everywhere, that is, also for the screened
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TABLE I. Overview of various models, using either orbital energies (OE) or
quasiparticle (QP) energies for ∆. Given is the exchange-like contribution to
the respective matrix.

K Pλ

Methoda A′ B ∆ A′λ Bλ

CC-SOSEX . . .b v OE 0 0
CC-IOSEX . . .b w QP 0 0
CC-IOSEX′ . . .b w OE 0 0
dRPAc 0 0 OE 0 0
dRPA-II v v OE 0 0
dRPA-IIsX 0 v OE 0 0
IOSEX w w QP 0 0
IOSEX′ w w OE 0 0
IOSEXsX 0 w QP 0 0
IOSEXsX′ 0 w OE 0 0
BSE 0 0 QP w w
BSE′ 0 0 OE w w
RPAsX 0 0 QP 0 w
RPAsX′ 0 0 OE 0 w
XBS 0 0 QP wλ wλ

XBS′ 0 0 OE wλ wλ

XBSsX 0 0 QP 0 wλ

XBSsX′ 0 0 OE 0 wλ

RPAxd 0 0 OE v v
RPAx-IIe v v OE v v

aThe prime indicates that quasiparticle energies are used for w but not for ∆.
bEnergy computed from drCCD amplitudes and B.
cdRPA ≡ dRPA-I.
dRPAx ≡ RPAx-I.
eSee Ref. 14.

exchange w (and wλ), then we attach a double prime to the
method’s acronym (not shown in Table I).

A few comments are in place here. First, we have grouped
Table I into different categories. The first three lines cor-
respond to time-ordered perturbation theory as realized in
the coupled-cluster approach. The next seven methods use
the direct RPA to determine the polarization propagator but
contract over different (possibly antisymmetrized) interaction
kernels. If the polarization propagator is calculated in the direct
RPA, antisymmetrization of the interaction kernel K seems
advantageous. Inspired by the observation by Maggio and
Kresse8 that instabilities can be avoided by using only antisym-
metrized B kernels, we have investigated this approximation
for the interaction kernel K as well (. . . sX methods). The next
nine methods apply direct RPA-like kernels for the interac-
tion K but calculate the polarization propagator either in the
full random-phase approximation (RPAx method) or by using
the full Bethe–Salpeter polarization propagator with antisym-
metrizedA′λ andBλ matrices. The final method (RPAx-II) uses
antisymmetrized matrices in both the polarization propagator
and the interaction kernel.

As to what kinds of combinations are expected to be
useful, the following issues are important:

Common experience tells that orbitals and one-electron
energies obtained from density-functional theory (DFT)
combined with the dRPA yield reasonable polarizabilities
(for instance, DFT static dielectric constants, C6 coeffi-
cients, and symmetry-adapted perturbation theory using DFT

polarizabilities are often remarkably accurate).23 Combined
with a dRPA kernel, the correlation energies are too negative,
but that can be alleviated by contracting over an antisym-
metrized interaction kernel. Combining dRPA polarizabilities
with antisymmetrized interaction kernels restores the direct
and exchange diagram in second order.

If quasiparticle energies are used to calculate the
independent-particle propagator, one needs to include the anti-
symmetric terms in the A′λ and Bλ matrices of the Bethe–
Salpeter equation to obtain quantitatively reliable excitation
spectra and polarizabilities. Specifically, combining quasipar-
ticle energies with the dRPA yields much too small polarizabil-
ities, as shown in Ref. 24. To obtain accurate results, the inclu-
sion of w (or wλ) in A′λ is particularly important, as this term
introduces excitonic effects via the particle-hole ladder dia-
grams. However, including screened (w or wλ) and unscreened
(v) exchange integrals in the A′λ matrix often introduces insta-
bilities causing negative eigenvalues in the excitation spectrum
(cf. Ref. 8). As discussed in Sec. IV, these methods turn out
to be unstable for most systems.

Inclusion of the exchange diagrams only in the Bλ matrix
of the polarization propagator resolves the instability issues.
Fundamentally, however, it is unclear whether this approach
should be combined with DFT orbital energies or GW quasi-
particle energies. Since excitonic effects are neglected (no
exchange diagrams in the A′λ matrix), it seems reasonable to
test this approach with both DFT orbital energies and GW
quasiparticle energies, with DFT orbital energies possibly
having a slight advantage.

III. COMPUTATIONAL DETAILS

All adiabatic-connection correlation-energy calculations
were performed with the Turbomole program package using
the modules dscf (for Kohn–Sham calculations), escf (for
the GW quasiparticle energies and Bethe–Salpeter correlation
energies), and rirpa (for dRPA and AXK). The CFOUR pro-
gram (Coupled-Cluster techniques for Computational Chem-
istry)25 was used for the coupled-cluster calculations on the
transition-metal monoxides at the coupled-cluster singles-and-
doubles level with perturbative triples [CCSD(T)].26,27

A. Atomic total energies and HEAT test set

The calculations were performed in the aug-cc-pwCVXZ
(aug-cc-pVXZ for H) basis sets of Peterson and Dunning,28–30

with X = T, Q, and 5. When using the escf module, the
“MP2-fitting” basis set of Hättig was used as an auxiliary
basis set for the RI approximation (cbas in Turbomole jar-
gon).31 When using the rirpa module, Weigend’s universal
“Coulomb-fitting” basis was used for the RI approximation
(jbas in Turbomole jargon).32

The complete-basis-set (CBS) total and atomization ener-
gies were obtained by fitting the function Eref(∞) + α
exp(−βX) to the Kohn–Sham determinant expectation val-
ues obtained in aug-cc-pVXZ basis sets28 with X = Q, 5, and
6 (X = T, Q, and 5 for Li and Be) and by fitting the function
Ec(∞) + γX−3 to the correlation energies obtained in aug-cc-
pwCVXZ (aug-cc-pVXZ for H) basis sets with with X = Q and
5.33,34 We refer to this extrapolation as Q56/Q5 extrapolation.
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Quasiparticle energies were computed at the evGW
level35 with Turbomole’s escf module using the implemen-
tation of Ref. 7. In these calculations, the relevant Turbomole
parameters were set to eta = 0.05 and rpaconv = 5.
Numerical integration over coupling strength was done using a
Gauß-Legendre quadrature using 32 points or more. The evGW
level was chosen because it was found to outperform the (lin-
earized) G0W0 scheme with respect to electronic excitation
energies, yielding an accuracy similar to that of the computa-
tionally more involved quasiparticle self-consistent approach
(qsGW ).7

The functionals TPSS36 and TPSSh37,38 were employed in
the Kohn–Sham calculations, using the Turbomole parameters
gridsize=5, scfconv=10, and denconv=1d-9.

In Ref. 39, Bates and Furche argued that the reference
determinant for RPA correlation-energy calculations is most
appropriately generated from a (non-hybrid) semi-local DFT
calculation. They recommend the TPSS functional, but we
decided to also test the hybrid functional TPSSh. At this point,
a comprehensive study of functionals must be postponed into
the future.

B. Transition-metal monoxides

The computations on the 3d transition-metal monoxides
were all performed in the def2-QZVPP basis set of Weigend,
Ahlrichs, and Furche.40 As for the atomic total energies and
atomization energies, the “MP2-fitting” basis set of Hättig was
used as a cbas auxiliary basis set for the RI approximation,31

while for computations with the rirpamodule, Weigend’s uni-
versal “Coulomb-fitting” jbas basis was used.32 Quasiparticle
energies were computed at the evGW level35 using the param-
eters eta = 0.05 and rpaconv = 5. The underlying
Kohn–Sham calculations were performed with the function-
als TPSS36 and TPSSh37,38 using the Turbomole parameters
gridsize = 5,scfconv = 9, anddenconv = 1d-8.
Calculations were performed for the same electronic states as
given in Table VI of Ref. 41, and for each system, the equi-
librium geometry and harmonic vibrational frequency were
determined by fitting a 6th-degree polynomial to seven points
about the minimum of the potential-energy curve (of the
method of interest), using an equidistant spacing of 0.02 a0.
Numerical integration over coupling strength was done using
a Gauß-Legendre quadrature using 32 points or more.

IV. RESULTS AND DISCUSSION

In this section, we will discuss results that were obtained
using Kohn–Sham orbitals obtained from DFT calculations
with the TPSS functional.36 All of these calculations have been
repeated with TPSSh orbitals, but the results obtained with
this hybrid functional have been moved to the supplemenatry
material. The results do not depend too much on the Kohn–
Sham orbitals, and it seems appropriate to focus on the TPSS
results in the main text.

In the following, we will discuss the results obtained for
atomic total energies, atomization energies, bond lengths, and
harmonic vibrational frequencies.

Note that we do not report results of all methods
mentioned in Sec. II because we encountered instabilities

(matrices that were not positive definite) on many occasions
when applying the RPAx, RPAx-II, BSE, BSE′, XBS, and
XBS′ methods. Thus, these methods do not occur in the tables
with results. Note that the methods plagued by instabilities
have in common that the matrixA′ of Table I contains exchange
contributions.

A. Atomic total energies

Table II shows the results for the total energies of the
atoms H−−Ne. Computed energies are compared with the esti-
mates for the exact nonrelativistic total energies of Davidson
and co-workers.42 In wave function theory, the post-Hartree–
Fock correlation energy is added to the Hartree–Fock energy
(Hamiltonian expectation value obtained with the Hartree-
Fock determinant) to obtain the total electronic energy. In the
framework of the adiabatic connection, however, the corre-
lation energy is added to the Hamiltonian expectation value
computed with the Kohn-Sham determinant. Such an
adiabatic-connection correlation energy therefore cannot
directly be compared with a post-Hartree–Fock correlation
energy. Thus, we decided to extrapolate both the expectation
values and the correlation energies to the limit of a complete
basis such that for each system, we can compare the sum of
the two extrapolated energies with the highly accurate total
electronic energy of Ref. 42.

The dRPA model yields only very poor total energies for
the atoms H−−Ne. Also the Bethe–Salpeter based methods
using orbital energies only (instead of quasiparticle energies)
do not perform very well (methods RPAsX′′–IOSEXsX′′).
The virtually identical results for AC-SOSEX and CC-SOSEX
have been observed for many systems in several studies.
dRPA-IIsX is also very close, and a diagrammatic analysis
shows that all three include identical diagrams up to sec-
ond order in the Coulomb interaction. In third order, sub-
tle differences exist, where AC-SOSEX includes improper
diagrams. It it somewhat remarkable that the differences
between CC-SOSEX/AC-SOSEX and RPAsX/XBSsX/CC-
IOSEX are also small, although the latter three methods cal-
culate the polarization propagators using GW quasiparticle
energies instead of Kohn–Sham orbital energies. There is no
obvious reason for this good agreement. On the other hand,
the good agreement within the group RPAsX/XBSsX/CC-
IOSEX is expected since these methods use the same one-
electron energies and include a very similar set of diagrams
(they are again identical up to second order in the Coulomb
interaction).

Replacing the quasiparticle energies by orbital energies
in the diagonal matrix ∆ increases the magnitude of the cor-
relation energies consistently by about 25–35 mEh for the
atoms B−−Ne. This is in line with our expectations: the one-
electron gaps are smaller using orbital energies than quasipar-
ticle energies, so fluctuations and correlation energies increase
in magnitude. XBSxX′ and IOSEXsX′ are particularly close,
and a diagrammatic analysis shows that they sum the same
set of diagrams up to third order in the Coulomb interac-
tion (in fourth order, the XBSxX′ approach includes dia-
grams with two B’s that are missing in IOSEXsX′). A more
detailed diagrammatic analysis is postponed to future studies,
though.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-005838
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-005838
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TABLE II. Errors in the total energies (in mEh) of the atoms H−−Ne. Computed using the TPSS functional and
extrapolated to the basis-set limit (Q56/Q5 extrapolation).

Methoda H He Li Be B C N O F Ne

Referenceb
�500.00 �2903.7 �7478.1 �14 667 �24 654 �37 845 �54 589 �75 067 �99 734 �128 939

TPSS 0 �6 �10 �4 �15 �22 �27 �43 �46 �42
TPSS orbital energies

dRPAc
�20 �40 �65 �81 �105 �129 �145 �169 �189 �199

AXKc
�2 �4 �9 �11 �10 �9 �5 �6 �6 �2

CC-SOSEX 0 1 1 6 11 13 14 17 20 22
AC-SOSEX 0 1 1 6 11 14 14 18 21 23
dRPA-II �3 �6 �16 �27 �30 �38 �17 �28 �40 �14
dRPA-IIsX 1 3 5 14 21 25 22 28 33 34
RPAsX′′ �4 �10 �18 �25 �29 �33 �27 �35 �40 �31
XBSsX′′ �3 �7 �14 �18 �20 �23 �17 �23 �26 �18
CC-IOSEX′′ �4 �9 �17 �23 �27 �31 �24 �32 �37 �27
IOSEX′′ �7 �16 �33 �55 �63 �73 �48 �67 �81 �54
IOSEXsX′′ �3 �8 �15 �20 �23 �25 �19 �26 �29 �20

evGW quasiparticle energies
RPAsX �2 �1 �5 8 8 7 6 8 10 12
RPAsX′ �3 �8 �13 �18 �19 �21 �20 �25 �28 �26
XBSsX �1 1 �2 12 14 14 13 16 20 22
XBSsX′ �2 �6 �9 �12 �11 �12 �12 �14 �16 �14
CC-IOSEX �2 0 �4 9 10 9 8 10 12 15
CC-IOSEX′ �3 �7 �12 �16 �17 �18 �18 �22 �24 �22
IOSEXsX′ �2 �6 �9 �10 �10 �11 �12 �14 �15 �15

aOne prime indicates that orbital energies are used for ∆; a double prime indicates that orbital energies are not only used for ∆ but
also for w (or wλ).
bFrom Ref. 42.
cComputed with the rirpa module.

The new methods perform roughly as well as the
approximate-exchange-kernel (AXK) method of Bates and
Furche39 and show only minor mutual differences.

B. HEAT test set

In real-world applications of electronic-structure
approaches to chemical problems of interest, energy differ-
ences are more important than total energies. In 2008, Harding
et al.16 published accurate values for the non-relativistic elec-
tronic atomization energies for a series of small molecules
using the “highly accurate extrapolated thermochemistry”
(HEAT) protocol, and in Table III, we compare the results
of our calculations with these HEAT reference values. Both
our values and the HEAT values have been extrapolated to the
complete-basis-set (CBS) limit. Deviations from the HEAT
values obtained in finite basis sets are also reported. Figure 1
visualizes the deviations from the HEAT reference values for
a few selected methods in terms of normalized Gaussian dis-
tributions. The HEAT test set comprises the 26 molecules N2,
H2, F2, CO, O2, C2H2, CCH, CF, CH2, CH, CH3, CN, CO2,
H2O2, H2O, HCN, HCO, HF, HNO, HO2, NH2, NH3, NH,
NO, OF, and OH. For molecules of this size, a mean absolute
error of 31.2 kJ mol−1 in the atomization energies as obtained
at the dRPA level is unacceptable (the standard deviation σ of
the error distribution amounts to 21.9 kJ mol−1; see Fig. 1).
This is much improved by the AXK method of Bates and
Furche,39 which shows a mean absolute error of 18.4 kJ mol−1

(σ = 12.7 kJ mol−1).

TABLE III. Mean absolute error (in kJ mol�1) with respect to the non-
relativistic, electronic atomization energies of the HEAT test set. Computed
using the TPSS functional.

Method ACVTZ ACVQZ ACV5Z CBSa

TPSS 15.1 15.5 15.6 15.6

TPSS orbital energies

dRPAb 55.2 41.1 36.4 31.2

AXKb 46.2 30.2 24.6 18.4

CC-SOSEX 61.0 45.7 40.5 34.8

AC-SOSEX 61.1 45.8 40.6 34.9

dRPA-II 77.6 61.5 56.2 51.8

dRPA-IIsX 75.4 60.2 55.0 49.5

RPAsX′′ 37.5 22.3 18.5 15.9

XBSsX′′ 37.1 22.0 16.9 13.6

CC-IOSEX′′ 37.8 22.8 18.6 15.6

IOSEX′′ 56.6 48.8 47.1 45.4

IOSEXsX′′ 40.9 25.9 20.7 16.5

evGW quasiparticle energies

RPAsX 57.6 41.0 34.7 27.8

RPAsX′ 23.5 8.1 5.3 5.8

XBSsX 62.7 46.2 40.0 33.1

XBSsX′ 27.7 12.3 7.1 4.0

CC-IOSEX 59.3 42.8 36.6 29.8

CC-IOSEX′ 24.1 8.7 4.8 4.7

IOSEX 41.5 24.8 18.6 11.9

IOSEX′ 43.2 36.1 34.5 32.9

IOSEXsX 97.1 80.4 73.9 66.9

IOSEXsX′ 26.7 11.3 6.2 3.2

aQ56/Q5 extrapolation.
bComputed with the rirpa module.
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FIG. 1. Normalized Gaussian distributions of deviations from the HEAT
benchmark values.

The SOSEX variants AC-SOSEX, CC-SOSEX, dRPA-
II, and dRPA-IIsX all yield results of poorer quality than
dRPA and thus are no improvement. Very promising, how-
ever, are the methods RPAsX′, XBSsX′, CC-IOSEX′, and
IOSEXsX′. It appears that it is advantageous to use quasi-
particle energies only for the screened interaction w (and/or

wλ), not for the energy differences of the matrix ∆. Since all
of these methods neglect the particle–hole ladder diagrams in
the A′λ matrix, the use of quasiparticle energies in the polar-
ization propagator would yield too small polarizabilities and
fluctuations. Using the Kohn–Sham orbital energies rectifies
this problem. All of this also applies to the results obtained
with the TPSSh functional (see Table S2 in the supplemenatry
material). Of the above-mentioned methods, the CC-IOSEX′

method is particularly promising. Building the matrices X1 and
Y1 is relatively straightforward and not hampered by instabil-
ities (it is done at the dRPA level). Furthermore, no numer-
ical integration over the coupling strength is involved [see
Eq. (30)].

C. Transition-metal monoxides

In view of the success of the CC-IOSEX′ approach, we
found it interesting to see whether the method would also per-
form well on a quite different set of molecules such as the 3d
transition-metal monoxides MO with M==Ca−−Zn. The results
of the corresponding calculations are presented and discussed
in the present section.

The 3d transition-metal monoxides have been inves-
tigated by Furche and Perdew as well as by Bates and
Furche to test the TPSS functional and the AXK approach,
respectively.39,41 As in Ref. 39, we use the def2-QZVPP
basis set and compare the computed results (equilibrium
bond lengths and harmonic vibrational frequencies) with

TABLE IV. Errors in the equilibrium bond lengths (re in pm) of transition-metal monoxides. Computed in the
def2-QZVPP basis set. Hartree–Fock reference for UHF-CCSD(T), TPSS reference elsewhere.

Method CaO ScO TiO VO CrO MnO FeO CoO NiO CuO ZnO MAEa

Expt.b 182.2 166.8 162.0 158.9 161.5 164.6 161.6 162.9 162.7 172.4 171.9c

CCSD(T)d 0.7 0.4 �0.3 �1.5 0.1 �0.3 �1.2 �2.8 �0.1 2.6 �1.2 1.0
TPSS �1.0 0.0 1.1 0.1 �0.1 �1.7 �1.1 �0.4 0.2 �0.2 �2.0 0.7

TPSS orbital energies
dRPAe 0.0 1.2 2.0 0.9 1.9 �0.7 0.3 2.8 1.2 �0.2 �2.1 1.2
AXKe

�0.2 �0.1 0.6 �0.9 0.2 �1.1 �0.7 0.6 �1.2 2.6 0.3 0.8
CC-SOSEX �3.0 �2.1 �1.4 �3.0 �2.5 �2.7 �3.2 �2.5 �5.6 6.2 �1.9 3.1
AC-SOSEX �3.1 �2.1 �1.5 �3.1 �2.8 �2.8 �3.3 �2.7 �6.0 7.0 �1.7 3.3
dRPA-II 1.5 2.1 2.5 1.6 �0.5 �0.1 2.0 �5.0 0.2 3.6 . . .f 1.9
dRPA-IIsX �5.6 �4.0 �3.4 �5.2 �5.2 �4.9 �5.8 �4.7 �9.8 11.4 �4.1 5.8
RPAsX′′ 2.7 2.1 2.9 2.0 2.3 1.1 2.1 2.1 3.6 0.5 1.6 2.1
XBSsX′′ 2.4 1.8 2.6 1.7 2.0 1.0 1.9 1.7 3.3 0.9 1.4 1.9
CC-IOSEX′′ 2.8 2.2 2.9 2.1 2.3 1.2 2.2 2.2 3.8 0.6 1.7 2.2
IOSEXsX′′ 2.4 1.8 2.6 1.7 2.0 1.0 1.9 1.8 3.2 1.0 1.7 1.9

evGW quasiparticle energies
RPAsX 0.6 �2.1 �1.4 �2.0 �0.8 �2.2 �1.9 �0.9 �1.4 1.3 �2.8 1.6
RPAsX′ 1.6 0.9 1.7 0.6 1.1 0.0 0.4 1.0 0.9 0.5 �0.4 0.8
XBSsX 0.3 �2.3 �1.6 �2.2 �1.0 �2.3 �2.1 �1.4 �1.7 1.7 �2.9 1.8
XBSsX′ 1.0 0.4 1.2 0.0 0.5 �0.4 �0.1 0.3 �0.3 1.1 �0.7 0.5
CC-IOSEX 0.6 �2.1 �1.4 �2.0 �0.8 �2.2 �1.9 �0.9 �1.4 1.4 �2.8 1.6
CC-IOSEX′ 1.7 0.9 1.7 0.6 1.1 0.0 0.5 1.1 1.0 0.7 �0.4 0.9
IOSEXsX′ 0.7 0.1 1.0 �0.2 0.2 �0.7 �0.5 0.1 �0.8 1.4 �1.2 0.6

aMean absolute error.
bFor details on experimental data, cf. Ref. 41.
cCCSD(T) result from Ref. 43.
dFrozen-core (M: 1s2s2p, O: 1s) UHF-CCSD(T)/def2-QZVPP computations with cfour.
eComputed with the rirpa module.
fComputation failed.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-005838
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-005838
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TABLE V. Errors in the harmonic vibrational frequencies (ωe in cm�1) of transition-metal monoxides. Computed
in the def2-QZVPP basis set. Hartree–Fock reference for UHF-CCSD(T), TPSS reference elsewhere.

Method CaO ScO TiO VO CrO MnO FeO CoO NiO CuO ZnO MAEa

Expt.b 732 965 1009 1011 898 840 880 853 838 640 727c

CCSD(T)d
�33 �16 39 �83 16 14 67 145 132 �28 19 54

TPSS 43 9 6 4 15 67 43 8 15 25 36 25
TPSS orbital energies

dRPAe
�37 �66 �65 �46 �36 �51 23 25 43 28 49 43

AXKe
�12 �24 �10 18 5 39 39 71 58 �48 �43 33

CC-SOSEX 54 30 51 89 81 84 111 217 212 �123 15 97
AC-SOSEX 56 32 54 95 93 88 116 230 222 �136 12 103
dRPA-II �42 �87 �54 �12 120 33 �1 �60 32 �80 . . .f 52
dRPA-IIsX 120 89 119 167 165 137 186 376 367 �169 81 180
RPAsX′′ �59 �83 �73 �62 �18 15 �16 �61 �64 12 �72 49
XBSsX′′ �54 �75 �65 �53 �15 15 �12 �60 �58 3 �71 44
CC-IOSEX′′ �61 �84 �74 �63 �17 13 �18 �65 �70 10 �75 50
IOSEXsX′′ �55 �76 �65 �52 �15 14 �12 �53 �56 �2 �74 43

evGW quasiparticle energies
RPAsX �12 �19 3 36 �63 57 30 �201 174 24 102 66
RPAsX′ �32 �55 �46 �29 �2 40 31 13 15 10 �18 27
XBSsX �11 �17 1 44 �56 70 43 �67 129 �25 95 51
XBSsX′ �20 �41 �29 �10 12 45 43 43 53 �9 �7 28
CC-IOSEX �11 �18 5 37 �62 56 29 �202 173 13 102 64
CC-IOSEX′ �33 �55 �47 �29 0 40 29 13 12 6 �17 26
IOSEXsX′ �14 �34 �24 �3 19 49 50 60 74 �18 15 33

aMean absolute error.
bFor details on experimental data, cf. Ref. 41.
cCCSD(T) result from Ref. 43.
dFrozen-core (M: 1s2s2p, O: 1s) UHF-CCSD(T)/def2-QZVPP computations with cfour.
eComputed with the rirpa module.
fComputation failed.

experimental data. Of course, a comparison of non-relativistic,
pure electronic-structure results obtained in a finite basis set
of atomic orbitals with experimental results is somewhat trou-
blesome, but we can compare our results also with those that
are obtained at the Kohn–Sham, dRPA, AXK, and CCSD(T)
levels.

Considering the equilibrium bond length re, the mean
error and mean absolute error of the set of 11 monoxides
amount to −0.5 and 0.7 pm, respectively, at the Kohn–Sham
TPSS/def2-QZVPP level (see Table IV). This is remarkably
accurate, in particular, in comparison with the dRPA and AXK
levels, which display mean absolute errors of 1.2 and 0.8 pm,
respectively (the mean errors are 0.7 and 0.0 pm, respectively).
The dRPA and AXK approaches do not seem to improve the
underlying Kohn–Sham results.

This behavior of the TPSS, dRPA, and AXK methods is
corroborated by the results obtained for the harmonic vibra-
tional frequencies ωe (see Table V). Whereas the mean abso-
lute error amounts to 25 cm−1 at the TPSS/def2-QZVPP level,
these errors are 43 and 33 cm−1 at the dRPA and AXK levels,
respectively. Also the SOSEX variants are no improvement
over Kohn–Sham theory. For the bond lengths, we find mean
absolute errors of 3.1, 3.3, 1.9, and 5.8 pm, respectively, for the
methods CC-SOSEX, AC-SOSEX, dRPA-II, and dRPA-IIsX.
For the harmonic vibrational frequencies, the respective mean
absolute errors are 97, 103, 52, and 180 cm−1.

With respect to harmonic vibrational frequencies of indi-
vidual systems, the differences between results obtained with

TPSS or TPSSh orbitals seem somewhat more pronounced
than for the equilibrium distances, but the corresponding mean
absolute errors show a comparable order of magnitude for the
TPSS- and TPSSh-based results.

Unfortunately, it is difficult to identify clear trends or
approaches that perform clearly better than others. With
respect to the atomization energies of the HEAT test set, the
methods RPAsX′, XBSsX′, CC-IOSEX′, and IOSEXsX′ look
promising, and indeed, these methods also perform (reason-
ably) well for the transition-metal monoxides. With respect to
the bond lengths, the mean absolute errors are 0.8, 0.5, 0.9,
and 0.6 pm, respectively. This is roughly the same quality as
obtained in the TPSS and AXK calculations. A similar conclu-
sion can be drawn from the harmonic-vibrational-frequency
results, and in view of the above, we conclude that the
CC-IOSEX′ approach remains a good candidate for the accu-
rate and cost-efficient computation of correlation energies
in the framework of the adiabatic-connection fluctuation–
dissipation theorem.

V. CONCLUSIONS

We have implemented (in the Turbomole program pack-
age) a number of methods based on the Bethe–Salpeter equa-
tion for the computation of correlation energies in the frame-
work of the adiabatic-connection fluctuation–dissipation the-
orem. Inclusion of (screened) exchange contributions when
constructing the matrices Pλ (see Table I) often leads to
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instabilities. The corresponding methods were not applicable.
More useful methods were obtained when invoking the direct
random-phase approximation (dRPA) when constructing Pλ.
Then, (screened) exchange contributions can be accounted for
in the matrix K (see Table I). The performance of the cor-
responding methods has been assessed, and in particular, the
CC-IOSEX′ approach seemed very promising. As we have
shown, this approach performs practically identical to XBSsX,
which is a more accurate variant than RPAsX (the method
advocated originally by Maggio and Kresse8). There is an
important difference, though. In the present work, the polar-
ization propagators are evaluated using Kohn–Sham orbital
energies. This approximation was not investigated by Mag-
gio and Kresse for the homogeneous electron gas since it
tends to overestimate the absolute correlation energy (which
is also the case for atoms, as demonstrated in Table II).
Absolute errors in the correlation energy are, however, often
acceptable: for the homogeneous electron gas, the most rel-
evant property is that the density dependence of the correla-
tion energy is well reproduced, and a constant offset hardly
matters.

SUPPLEMENTARY MATERIAL

See supplementary material for all results obtained with
the TPSSh functional in place of the TPSS functional.
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