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Electronic excitations in light absorbers for
photoelectrochemical energy conversion: first
principles calculations based on many body
perturbation theory†

Yuan Ping,za Dario Roccazyb and Giulia Galli*c

We describe state of the art methods for the calculation of electronic excitations in solids and

molecules, based on many body perturbation theory, and we discuss some applications of these

methods to the study of band edges and absorption processes in representative materials used as

photoelectrodes for water splitting.

1 Introduction

The production of hydrogen and oxygen from water through
photoelectrochemical energy conversion is a promising strategy to
take advantage of the Earth’s main energy source, the Sun.1,2

For example, upon absorption of sunlight by a semi-conducting
electrode (e.g. a solid oxide) interfaced with liquid water, electron–
hole pairs may be formed, leading to coupled electron–proton
transfers at the interface and eventually to water splitting. One of
the challenges in the optimization of this process is to find Earth
abundant and stable materials that are at the same time efficient
absorbers of sunlight (e.g. direct band gap semiconductors
absorbing mostly in the visible), and have band edges appropri-
ately aligned with water reduction and oxidation potentials to
permit efficient proton-coupled electron transfer reactions. There-
fore, from a theoretical standpoint, an essential prerequisite to
predict materials for photoelectrochemical energy conversion is
the development of efficient methods to describe electronic
excitation in solids and molecules.
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Desirable methods to study electronic excitations should
allow one to tackle condensed and molecular systems on the
same footing, and be applicable to broad classes of materials
with various compositions. Indeed, depending on the desired
design of the photoelectrochemical cell, one may need to
describe interfaces between liquid water and a solid surface
with a molecular catalyst attached to it, or between water and a
complex, possibly disordered and defective solid with a thin
film acting as a catalyst deposited on top. In addition, it is
necessary to have a general theoretical framework to handle
both charged and neutral electronic excitations; the prediction
of band edge alignments between photoelectrodes and water,
requires the ability to describe charge excitations, that is
photoemission and inverse photoemission processes, through
which one determines the energy of valence and conduction
bands. The optimization of photoelectrodes for light absorp-
tion involves instead the description of neutral electron hole
pair excitations formed upon the interaction of the material
with light, and the description of the subsequent formation of a
bound exciton.

Given the breadth of materials which are interesting to
explore for photoelectrochemical research, and the complexity
of electronic excitations involved, the choice of theoretical
methods naturally falls on first principles approaches. First
principles (or ab initio) calculations do not require any fit to
experimental data and are thus not limited to specific classes of
systems nor to predetermined morphologies of materials.
Density Functional Theory3 (DFT) is one of the most successful
ab initio theories adopted in the last thirty years by chemists
and physicists alike, to compute ground state properties
of molecules and solids.4 It is in principle an exact theory
which however requires approximations for the exchange–
correlation potential (Vxc) of the electrons in practical calculations

(the exact Vxc is unknown). While used mostly by condensed
matter physicists until the early 1990s, within the so called local
density approximation5 (LDA) of Vxc, DFT was also adopted by
chemists in the last 25 years. The adoption of DFT by the
quantum chemistry community came after the development of
generalized gradient corrected approximations6–8 (GGA) to Vxc.
Such approximations yield reasonably accurate results for
ground state properties of many solids and molecules, unlike
the LDA which overall appears to work better for condensed
than for molecular phases.

Within DFT, a set of self-consistent independent-electron
Schrödinger equations is solved, for a given, approximate Vxc, to
obtain the density of interacting electrons within a solid or a
molecule. These equations are named after Kohn and Sham
(KS).5 The density uniquely determines all properties of
the system. The eigenvalues of the KS equations cannot be
interpreted as excitation energies involving addition (electron
affinity) or removal (ionization potential) of an electron, except
for the highest eigenvalue of a finite system which is minus the
ionization energy.9,10 Therefore KS eigenvalues should not be
used to describe photoemission processes, nor, for example, to
compute band offsets and band edges in solids. However, in
solids electronic gaps obtained as the difference between the
KS energies of the top of the valence band and the bottom of
the conduction band, were often compared to experimental
data, and likewise the difference between HOMO and LUMO
energies in molecules. In many cases it was found that trends
within given classes of solids or molecules are well reproduced
by KS electronic gaps; however absolute values often show large
errors compared to experiments (e.g. a factor of approximately
two in the case of the band gap of Si). An alternative method to
compute excitation energies of molecules and clusters, called
the Delta (D) self-consistent approach,11 consists in performing
DFT ground-state calculations for neutral and charged systems
(i.e. with an electron either removed or added to the system)
and in obtaining the first electron affinity or first ionization
potential as differences of total energies. Recently this method
was generalized to treat periodic solids.12

Furthermore, DFT is not suitable for describing electronic
excitations probed by optical absorption experiments. In
the simplest linear optical process, an electron undergoes a
transition from the ground to an excited state upon interaction
with an external electromagnetic field; in a semiconductor or
insulator, the excited electron may then bind to the corres-
ponding hole, forming an exciton. In order to describe such an
excitation, an extension of DFT to include time dependent
perturbations, i.e. the electromagnetic field impinging upon
a solid or molecule, is required. Such generalization was
developed in the 1980s, and goes by the name of time-dependent
density functional theory (TDDFT).13 The performance of TDDFT
in describing absorption processes and exciton binding energies
depends again on the choice of the (time dependent) exchange
correlation potential. When using adiabatic local or GGA-based
approximations, the results of TDDFT for semi-conducting
solids and insulators are usually rather poor;14 they appear to
be in better agreement with experiments for several classes of
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molecules, although notable failures were observed, e.g. in the
description of charge transfer excitations.15,16

An alternative approach to compute electronic excitations of
solids and molecules is based on many body perturbation
theory (MBPT) and the Green’s function formalism.17,18 In
the last two decades single-particle Green’s functions were
widely used in the calculations of photoemission spectra, band
offsets and band edges of solids19–22 and they are now applied
to the calculation of ionization potentials and electron affinities
of molecules as well.23–26 In a similar fashion, two-particle
Green’s functions, obtained through approximate solutions of
the Bethe–Salpeter equation,17,27 (BSE) were employed for the
calculation of neutral excitations involved in optical absorption
experiments of solids.28–31 Recently the BSE was also used to
compute optical excitations in molecules and clusters.30,32–34

The calculation of Green’s functions requires first the determi-
nation of the ground state of the electronic system. This may be
accomplished in different manners. In most of the condensed
matter physics literature, Green’s functions are built from
single-particle states obtained by solving the KS equations.

Computational difficulties have long limited the application
of MBPT to realistic systems of interest for photo-electroche-
mical energy conversion. However recent algorithmic advances
in the computation of quasi-particle energies24,25 and in the
solution of the BSE31,34 are permitting considerable progress in
the application of MBPT to photoelectrode materials, including
complex semi-conducting oxides. In this review we describe
MBPT and Green’s function based techniques, for first princi-
ple calculations of electronic excitation processes in solids and
molecules (see Table 1); we include a discussion of recent
algorithms allowing for the application of MBPT to realistic
materials. One of our goals is to introduce the formalism of
MBPT to the quantum chemistry community and to specify in
detail the theoretical and numerical approximations used in ab
initio calculations, so as to facilitate accurate comparisons with
experiments.

The rest of the paper is organized as follows: we summarize
the general concepts and equations of MBPT in Section 2, and
in Section 3 we describe algorithms to solve, in approximate
forms, the key equations of MBPT to obtain electronic excita-
tion energies and spectra. We then give some examples of
predictions of band alignments and absorption spectra of
promising photoeletrode materials in Section 4. We focus on
silicon based materials and oxides (TiO2 and WO3) for photo-
cathode and photoanode materials, respectively. Finally we give
our conclusions and outlook in Section 5.

2 first principles methods to compute
photoemission and absorption spectra
within many body perturbation theory
2.1 Single-particle Green’s functions

In this section we discuss the basic concept of MBPT, that of
single-particle many body Green’s functions.18 For the purpose
of this review, the term ‘‘particle’’ refers to an electron but the
Green’s function formalism is not restricted to electrons or
fermions (for example, it can be applied to describe phonons).
Single-particle Green’s functions are useful concepts to compute
electronic excitations involving the addition or the removal of
an electron and thus to describe photoemission experiments
(see Table 1). The time-ordered single-particle Green’s function
is defined as

G(1)(1,2) = �ihCN
0 |T̂ĉ (1) ĉ† (2)|CN

0 i, (1)

where 1 � (r1,t1) and 2 � (r2,t2) are compact notations to
indicate space coordinates r and time t (for simplicity the spin
variable is not included in our discussion); CN

0 is the normalized
many body ground-state wavefunction of a system containing N
electrons, T̂ is the time-ordering operator, and ĉ† (r,t) (ĉ (r,t)) is
an operator in the Heisenberg representation that creates
(destroys) an electron at position r at time t. In eqn (1) and
hereafter, the hat ‘‘^’’ indicates quantum-mechanical operators.
Atomic units (�h = m = e = 1) are used throughout the paper.
Symbols frequently used in this review are summarized in
Table 2.

In eqn (1) if t1 > t2 the Green’s function G(1) gives the
probability amplitude that a particle added to the system at
time t2 in position r2 be detected in position r1 at time t1.

Table 1 Electronic excitations discussed in this review (first row), together with
experimental (second row) and theoretical (third row) approaches used to probe
them. The fundamental equations of the theory described here are given in the
fourth row of the table

Table 2 Summary of symbols frequently used in this review

G(1) Single-particle Green’s function
G(1)

0 Non-interacting single-particle Green’s function
G(2) Two-particle Green’s function
ĉ† Creation field operator
ĉ Annihilation field operator
CN

j , EN
j Wavefunctions and energies of a interacting N electron

system; j = 0 corresponds to the ground-state
FN

0 Ground state wavefunctions of a non-interacting
N electron system

jj, e
ind
j Independent-electron Hartree orbitals and energies

fj, e
KS
j Kohn–Sham orbitals and energies

fj, ej Lehmann amplitudes and energies
E Dielectric matrix
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Similarly, if t2 > t1 a particle is removed from the system and the
Green’s function describes the time-evolution of the corres-
ponding hole. From the single-particle Green’s function it is
possible to obtain the expectation value of any single-particle
operator (e.g. the density) on the interacting ground-state, and
to obtain the ground-state energy by using the Galitskii–Migdal
formula.35 The physical interpretation of the Green’s function
as a propagator of a state with an additional electron or a hole
intuitively suggests that Green’s function theory may be used to
describe experiments that measure electron affinities or ioniza-
tion potentials.

If the Hamiltonian that describes the time evolution of the
field operators ĉ(1) and ĉ†(2) does not explicitly depend on
time, the time-ordered Green’s function in eqn (1) depends
only on the difference (t1 � t2). In this case, by inserting a
complete set of eigenstates of the system {CN+1

j } and {CN�1
j }

with (N + 1) and (N� 1) particles, respectively, in eqn (1), and by
applying a Fourier transform (from time t to energy o), one
obtains the so-called Lehmann representation of the Green’s
function:

Gð1Þ r1; r2;oð Þ ¼
X
j

fj r1ð Þf �j r2ð Þ
o� ej þ iZsgn ej � m

� � (2)

where Z is a positive infinitesimal and sgn denotes the sign
function.

fjðrÞ ¼ CN
0 jĉðrÞjCNþ1

j

D E

ej ¼ ENþ1
j � EN

0

9>=
>; for ej 4m; (3)

and

fjðrÞ ¼ CN�1
j jĉðrÞjCN

0

D E

ej ¼ EN
0 � EN�1

j

9>=
>; for ej om: (4)

In eqn (3) and (4) m is the chemical potential, EN
0 is the

ground-state energy of the N electrons system and EN�1
j and

EN+1
j are the energies of the system in which an electron is

removed or added, respectively. Within the Lehmann represen-
tation, the poles of the time-ordered single-particle Green’s
function represent the energies necessary to add or remove an
electron. In general the calculation of these energies is far from
trivial, since when an electron is added to or removed from the
system, all the other electrons readjust in a correlated manner.
The Green’s function G(1) (eqn (1) and (2)) accounts for all these
correlation effects.

2.2 The Dyson’s equation

The calculation of the full single-particle Green’s function is a
difficult task for any system of interacting electrons, in princi-
ple as difficult as determining the full many body wavefunction.
Perturbation theory may be used to approximate the many body
Green’s function by considering the Coulomb interaction
between electrons, u, as a perturbation acting on the non-
interacting system. This approach is called Feynman–Dyson
perturbation theory.18 The perturbation u is adiabatically

‘‘switched on’’ from t = �N (when the perturbation is absent)
to t = 0, when the interacting Hamiltonian is obtained. The
Gell-Mann and Low theorem18 ensures that the non-interacting
ground-state FN

0 of the system at t = �N (that can be easily
computed) evolves, upon adiabatic application of u, to an
eigenstate of the fully interacting Hamiltonian. Similarly, the
perturbation can be adiabatically ‘‘switched off’’ from t = 0 to
t = +N, bringing back the system to the non-interacting
ground-state FN

0 .
Within this framework the single-particle Green’s function

is expressed in terms of an expectation value on the non
interacting ground-state FN

0 . By using Wick’s theorem18 the
Green’s function can then be expanded in a perturbative series
whose terms depend only on the non-interacting single-particle
Green’s function G(1)

0 and the Coulomb interaction u. Feynman
diagrams are a convenient way of representing the integrals
involved in this perturbative expansion. The analysis of the
diagrammatic expansion of the Green’s function G(1) leads to
the definition of the Dyson’s equation18,36

Gð1Þð1; 2Þ ¼ G
ð1Þ
0 ð1; 2Þ þ

Z
G
ð1Þ
0 ð1; 3ÞSð3; 4ÞGð1Þð4; 2Þdð34Þ (5)

where S is the self-energy, whose physical meaning will be
discussed in detail in the next section. The Dyson’s equation is
a concise way of expressing the summation over an infinite
number of diagrams (within the perturbative expansion).

If an accurate approximation of S were known, the Dyson’s
equation would provide a way to compute the interacting
Green’s function G from the non-interacting G0. The Green’s
function G0 can be obtained by setting CN

0 = FN
0 in eqn (1),

where FN
0 is an independent-particle ground-state wavefunction

(it corresponds to a Slater determinant within the first quanti-
zation formalism). The non-interacting G0 can be written
explicitly as:

G
ð1Þ
0 ð1; 2Þ ¼ � i

X
j

jj r1ð Þj�j r2ð Þe�ie
ind
j t1�t2ð Þ

� y t1 � t2ð Þy eindj � m
� �

� y t2 � t1ð Þy m� eindj

� �h i
;

(6)

where y is the Heaviside function. The independent single-
particle orbitals jj and energy levels eind

j are obtained from the
independent electron equation

Ĥ
ind

jj ¼ �1
2
r2 þ V̂e�I þ V̂H

� �
jj ¼ eindj jj ; (7)

where V̂e�I is the Coulomb potential due to the nuclei, V̂H is the
Hartree potential

R
u r1; r2ð Þr r2ð Þdr2, and r is the electron density.

By Fourier transforming eqn (6), the Lehmann representation of
the independent electron Green’s function is obtained:

G
ð1Þ
0 r1; r2;oð Þ ¼

X
j

jj r1ð Þj�j r2ð Þ

o� eindj þ iZsgn eindj � m
� � (8)

where Z is a positive infinitesimal introduced to perform the
Fourier transform from the time to the frequency domain.

Review Article Chem Soc Rev

Pu
bl

is
he

d 
on

 2
1 

Fe
br

ua
ry

 2
01

3.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ite
 G

re
no

bl
e 

A
lp

es
 I

N
P 

on
 4

/1
5/

20
20

 8
:5

9:
34

 A
M

. 
View Article Online

https://doi.org/10.1039/c3cs00007a


This journal is c The Royal Society of Chemistry 2013 Chem. Soc. Rev., 2013, 42, 2437--2469 2441

By expressing eqn (8) as G(1)
0 = 1/(o� Ĥind) and using eqn (2),

the Fourier transform of eqn (5) leads to the following eigenvalue
equation:

Ĥ
ind

r1ð Þfj r1ð Þ þ
Z

S r1; r2; ej
� �

fj r2ð Þdr2 ¼ ej fj r1ð Þ (9)

If S is known, this equation determines the Lehmann
amplitudes and energies defined in eqn (3) and (4).

2.3 The concepts of self-energy and quasi-particle

Eqn (9) is an independent-particle Schrödinger-like equation
in which the electrons move in a mean-field determined by the
self-energy S, which thus plays the role of an effective potential.
However, there are a few differences between eqn (9) and a
single-particle Schrödinger equation, (e.g. the KS equations
of DFT): the self-energy S depends on the single-particle
energy and is a non-local and non-Hermitian operator.
Hence the functions {fj(r)} are not an orthonormal set and the
eigenvalues of eqn (9) are not real; therefore it is not straight-
forward to interpret them in terms of single-particle energies.
However, when the imaginary part of ej is small (i.e. the
lifetime of the state is long), the corresponding spectral peak
is narrow and exhibits a strong intensity; in this case ej and fj(r)
define a quasi-particle state. The condition of long lifetimes
is usually best fulfilled by electronic states near the Fermi
energy.37

As already mentioned, the self-energy in eqn (5) and (9) may
be approximated through a diagrammatic expansion, within
the Feynman–Dyson perturbation theory. The simplest approxi-
mation yields the exchange self-energy:18

Sx(1,2) = iG(1)(1,2)u(1+,2) (10)

Here u(1,2) � u(r1,r2)d(t+
1 � t2) and 1+ = (r1,t+

1) � (r1,t1 + g) where g
is a positive infinitesimal. Since Sx depends explicitly on the
Green’s function G, the Dyson’s equation and eqn (9) must be
solved self-consistently. By performing a Fourier transform
from t to o and computing the corresponding integrals in the
frequency domain, eqn (10) becomes:

Sx r1; r2ð Þ ¼ �
XNocc

j¼1
fj r1ð Þf �j r2ð Þu r1 � r2ð Þ (11)

where Nocc is the number of occupied states. By using the
definition of the exchange self-energy (eqn (11)) in eqn (9), one
recovers the Hartree–Fock (HF) equations. Within the HF
approximation, the self-energy S does not depend on the energy
o, is Hermitian and the self-consistent solution of eqn (9) is
straightforward. For practical purposes the HF approximation
may be accurate to treat some excitation energies in molecules38

but it is not reliable for solids.39,40 In a first quantization
framework the HF ground-state wavefunction is a single Slater
determinant, namely the electrons are independent particles. In
Section 2.6 we will discuss the GW approximation to the self-
energy, which introduces correlation effects. We now turn to the
definition of the two particle Green’s function.

2.4 Two-particle Green’s function and the Bethe–Salpeter
equation

As mentioned in 2.1, single-particle Green’s functions may be
used to model photoemission experiments. However, these
Green’s functions cannot describe the excitations involved in
optical absorption experiments. Indeed the simplest linear
optical process involves two quasi-particles, an electron and
an hole, interacting with each other to form an exciton. The
description of such a bound excitation requires a Green’s
function that represents at the same time the propagation of
a hole and of an electron (see Table 1). To describe absorption
spectra, we define the two-particle Green’s function:18

G(2)(1,2;10,20) = �hCN
0|T̂ĉ(1)ĉ(2)ĉ†(20)ĉ†(10)|CN

0i. (12)

Eqn (12) can be interpreted as a propagator of a state with two
additional particles. Depending on the time ordering, these two
particles can be two holes, two electrons or an electron–hole
pair (i.e. the case of interest to this review). Within this
formalism it is convenient to introduce the two-particle correla-
tion function

iL(1,2;10,20) = �G(2)(1,2;10,20) + G(1)(1,10)G(1)(2,20) (13)

where the product of the single-particle Green’s functions
G(1)(1,10) and G(1)(2,20) (second term on the right hand side)
represents the independent evolution of two quasi-particles.
The two-particle correlation function satisfies the following
form of the Bethe–Salpeter equation:18,41

Lð1; 2; 10; 20Þ ¼ L0ð1; 2; 10; 20Þ

þ
Z

d3456L0ð1; 4; 10; 3ÞXð3; 5; 4; 6ÞLð6; 2; 5; 20Þ

(14)

where iL0(1,2;10,2 0) = G(1)(1,20)G(1)(2,10); the kernel X is an
effective two-particle interaction that can be expressed as the
sum of the derivatives of the Hartree potential and of the self-
energy (see eqn (5) and (9)) with respect to the single-particle
Green’s function:

Xð3; 5; 4; 6Þ ¼ uð3; 6Þdð3; 4Þdð5; 6Þ þ i
dSð3; 4Þ
dGð1Þð6; 5Þ: (15)

In order to obtain the two-particle correlation function L
from eqn (14), approximations of the single-particle Green’s
function G(1) and of the kernel X are required. As apparent from
eqn (5) and (15), the evaluation of the self-energy S is crucial to
compute both G(1) and X. If one uses the exchange self-energy
(eqn (10)) in eqn (14) and (15), an equation equivalent to the
time-dependent Hartree–Fock (TDHF) equation is recovered.42

We note that in eqn (12) the two-particle Green’s function
contains more information than actually necessary to model
any optical absorption experiment and, in general, any neutral
excitation involving an electron–hole pair. To model optical
absorption, it is sufficient to consider the Green’s function18

G(2)(1, 2;1,2) = �hCN
0 |T̂ĉ†(1)ĉ(1)ĉ†(2)ĉ(2)|CN

0 i, (16)
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obtained by setting 10 = 1+ and 20 = 2+ in eqn (12). In eqn (16),
G(2) determines the time-evolution of an electron–hole pair,
described by the operator ĉ†ĉ (where ĉ creates a hole and ĉ† a
particle). Similar to the case of single-particle Green’s func-
tions, one may introduce the Lehmann representation for the
two-particle correlation function L corresponding to G(2) in
eqn (16):

Lðr1; r2; r1; r2;oÞ � Lðr1; r2;oÞ

¼
X
ja0

CN
0 jĉ

yðr1Þĉðr1ÞjCN
j

D E
CN

j jĉ
yðr2Þĉðr2ÞjCN

0

D E

o� EN
j � EN

0

� �
þ iZ

2
4

�
CN

0 jĉ
yðr2Þĉðr2ÞjCN

j

D E
CN

j jĉ
yðr1Þĉðr1ÞjCN

0

D E

oþ EN
j � EN

0

� �
� iZ

3
5

(17)

where {CN
j } represents excited state wavefunctions of the

system with N electrons and EN
j the corresponding energies.

Since the application of the operator ĉ†(1)ĉ(1) (or ĉ†(2)ĉ(2)) to
the ground state CN

0 does not change the total number of
electrons, only the states CN

j with N electrons yield non-zero
matrix elements in eqn (17). Because of the product
G(1)(1,10)G(1)(2,20) entering the definition of L (eqn (13)), the
term j = 0 does not contribute to the summation in eqn (17).

The physical meaning of L in eqn (17) will be discussed
further in the next section; we note here that the poles of L
correspond to the neutral excitation energies of the many body
system. In Section 3.3 we will show that the calculation of
neutral excitations through the solution of the Bethe–Salpeter
equation (eqn (14)) can be reformulated in terms of an eigen-
value problem.

2.5 Two-particle correlation functions and linear response
theory

Given a many-particle system, one may use linear response
theory to study the first order variation of the ground-state
expectation value of any physical observable (described by an
operator Â) due to the application of a weak external perturba-
tion Vext(r,t). Our interest in linear response theory is twofold:
(i) we wish to describe optical absorption experiments, where
the electric field of the incident light (the perturbation) is small
compared to the internal field of the system (see Section 3.3);
(ii) the definition of response functions, such as the dielectric
matrix, is necessary to introduce the screened Coulomb inter-
action and the GW approximation (see Section 2.6). Below we
relate the two-particle correlation function introduced in the
previous section to the first order response (r0) of the density of
a multi-electron system to an applied perturbation.

Consider the ground-state electronic density r̂ (namely Â = r̂);
the first order response to an external perturbation Vext is:

r0ð1Þ ¼
Z

LRð1; 2ÞVextð2Þdð2Þ (18)

Here we use the prime symbol 0 to indicate a perturbed quantity.
The first-order response of any other observable represented by

an operator B̂ can be obtained as dhBiðtÞ ¼
R
BðrÞr0ðr; tÞdr. In

eqn (18) we have introduced the retarded two-particle correlation
function LR, that by definition is the response function of
the system. At variance with the time-ordered case, retarded
correlation functions fulfill the requirement of causality, which
is necessary in linear response theory, where a response is
obtained only after a perturbation is applied. However, we note
that the use of time-ordered Green’s functions is necessary to
develop Feynman–Dyson perturbation theory and to derive
Hedin’s equations discussed in the next section.

In eqn (18) LR(1,2) is a particular case of the full (four
indexes) retarded correlation function and its Fourier trans-
form to the frequency domain (Lehmann representation) may
be easily defined from the time-ordered correlation function of
eqn (17):

LR(r1,r2,o) = Re[L(r1,r2,o)] +isgn(o)Im[L(r1,r2,o)], (19)

where sgn denotes the sign function. This relation shows how
LR may be obtained from L. Furthermore, for o Z 0 L and LR

coincide. Eqn (19) represents the formal link between the two-
particle correlation function L defined in Section 2.4 within a
Green’s function formalism, and linear response theory; in
particular, it links L to the first order response of the charge
density due to an external perturbation (eqn (18)).

In the following, we introduce the notation used in the
literature of many body perturbation theory (MBPT) applied
to solids and we relate such notation to that of linear response
theory. We define:

w(1,2) � L(1,2) and wr(1,2) � LR(1,2), (20)

where w is often called time-ordered reducible polarizability
and wr is the retarded reducible polarizability. For the purpose
of this review it is also convenient to define the retarded
dielectric matrix Er and its inverse E�1r :

V 0scrð1Þ ¼
Z

E�1r ð1; 2ÞVextð2Þdð2Þ (21)

Within linear response eqn (21) defines the total screened
potential V 0scr induced in the system by the external perturba-
tion Vext. By considering V 0scr ¼ Vext þ V 0H, where V 0H ¼ uwrVext

(we have used eqn (18) and the integrals are implicit), we obtain
the relation:

E�1r ð1; 2Þ ¼ dð1; 2Þ þ
Z

uð1; 3Þwrð3; 2Þdð3Þ: (22)

Using the definition of V 0scr in eqn (21), one can alternatively
define an irreducible polarizability ~wr, which relates the
induced density response to the screened potential V 0scr:

r0ð1Þ ¼
Z

~wrð1; 2ÞV 0scrð2Þdð2Þ: (23)

Through eqn (19), the definitions of Er and relations between Er,
wr and ~wr may be extended to the corresponding time-ordered
quantities E, w and ~w. From the next section, we drop the
subscript ‘‘r’’ for simplicity.
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A summary of response functions introduced in this review
is given in Table 3. In the next section we use the concept of
dielectric matrix to define an effective (screened) Coulomb
interaction W, a basic quantity entering the GW approximation.

2.6 Hedin’s equations and the GW approximation to the
self-energy

In principle, electronic removal and addition energies, neces-
sary to model photoemission measurements, can be computed
by solving eqn (9); however, the exact self-energy is unknown.
As discussed in Section 2.2, an approximation of S may be
found by applying Feynman–Dyson perturbation theory to the
Coulomb interaction u. In the simplest case this approach leads
to the Hartree–Fock approximation, which by definition does
not account for any correlation effect. In order to introduce
correlation effects, Hedin proposed an approach37,43 based on
the Schwinger’s functional derivative method.44,45 Instead of
expressing S in terms of the bare Coulomb potential u, one
expresses the self-energy in terms of the dynamically screened
Coulomb potential defined by:

Wð1; 2Þ ¼
Z

E�1ð1; 3Þuð3; 2Þdð3Þ: (24)

Here E�1 is the inverse time-ordered dielectric matrix, which
describes the screening of the bare Coulomb potential due to
all other electrons in the system. Eqn (24) is a specific case of

eqn (21) in time-ordered form; all the response functions used
in this section will be considered in their time-ordered form.

One may view the screened Coulomb potential W as the
Coulomb interaction attenuated by E�1; hence in principle a
perturbative expansion of the self-energy in powers of W may
be more rapidly convergent than Feynman–Dyson perturbation
theory, which is based on the bare u.

Using the polarizabilities defined in Section 2.5, the
screened Coulomb potential can be expressed as

Wð1; 2Þ ¼ uð1; 2Þ þ
Z

uð1; 3Þwð3; 4Þuð4; 2Þdð34Þ

¼ uð1; 2Þ þ
Z

uð1; 3Þ~wð3; 4ÞWð4; 2Þdð34Þ
(25)

Hedin37 introduced a closed set of equations determining S
and G(1) in terms of W:

Sð1; 2Þ ¼ i

Z
Gð1Þð1; 3ÞGð3; 2; 4ÞWð4; 1Þdð34Þ; (26)

~wð1; 2Þ ¼ �i
Z

Gð1Þð1; 3ÞGð1Þð4; 1ÞGð3; 4; 2Þdð34Þ; (27)

Gð1; 2; 3Þ ¼ dð1; 2Þdð1; 3Þ

þ
Z

dSð1; 2Þ
dGð1Þð4; 5ÞG

ð1Þð4; 6ÞGð1Þð7; 5ÞGð6; 7; 3Þdð4567Þ

(28)

where G(1) is given by eqn (5) and W by eqn (25). Here u(1,2) =
u(r1,r2)d(t1 � t2) and G(1,2;3) is the so-called vertex function. In
principle, the set of eqn (5), (25)–(28) must be solved self-
consistently to obtain the exact self-energy and the exact many
body single-particle Green’s function G(1). However, from a
computational standpoint the full self-consistent solution of
Hedin’s equations is a formidable task. Following Hedin,37 by
setting the self-energy S to 0 in eqn (28), one obtains:

G(1,2;3) = d(1,2)d(1,3) (29)

which provides a first order expansion of S in terms of W,
through eqn (26) and (27):

S(1,2) = iG(1)(1,2)W(1,2) (30)

Wð1; 2Þ ¼ uð1; 2Þ þ
Z

dð34Þuð1; 3Þw0ð3; 4ÞWð4; 2Þ (31)

~w(1,2) = w0(1,2) = �iG(1)(1,2)G(1)(2,1). (32)

Eqn (32) defines w0 which is the random-phase approximation
(RPA) to the irreducible polarizability; this approximation treats
quasi-particles as independent entities. Eqn (30) defines the
GW approximation to the self-energy. By comparison with
eqn (10), a formal analogy between the GW and the Hartree–
Fock approximation is evident: In the GW approximation
instead of the bare Coulomb potential u, used within HF, one
uses the dynamically screened Coulomb potential W. Since the
self-energy (eqn (30)) depends on the Green’s function, eqn (5)
or eqn (9) must be solved self-consistently. However, in most

Table 3 Response functions (first column) used in this review are defined in the
second column. The reducible polarizability (w) is related to the two particle
correlation function (L) (see eqn (19) and (20)); the irreducible polarizability (~w)
can be expressed by the product of single particle Green’s functions (see
eqn (32)) within the Random Phase Approximation (RPA); the dielectric matrix
(E) defines the screened Coulomb interaction (eqn (24))
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practical implementations the self-consistent procedure is
avoided and the GW self-energy is approximated starting from
DFT orbitals and energies (see Sections 3.2.1 and 3.2.2).

By performing a Fourier transform, eqn (30) can be
expressed as a convolution:

S r1; r2;oð Þ ¼ i

2p

Z
eio

0ZGð1Þðr1; r2;oþ o0ÞWðr1; r2;o0Þdo0;

(33)

where Z is an infinitesimal. This expression is often used in
numerical calculations, and its evaluation is a challenging task.
To simplify such a task, Hedin introduced the Coulomb-hole
plus screened exchange (COHSEX) approximation to the GW
self-energy:43

SCOHSEX r1; r2ð Þ ¼ SCOH r1; r2ð Þ þ SSEX r1; r2ð Þ

¼ 1

2
d r1; r2ð ÞWp r1; r2; 0ð Þ

�
XNocc

j¼1
fj r1ð Þf �j r2ð ÞW r1; r2; 0ð Þ;

(34)

where Wp = W � u and W is the statically screened Coulomb
interaction. The term SCOH describes the interaction of a quasi-
particle with the potential induced by the quasi-particle itself.
The term SSEX represents a statically screened Hartree–Fock
exchange operator (see eqn (11)). The COHSEX self-energy
presents several practical advantages over the full GW self-
energy (eqn (33)). The operator SCOHSEX is Hermitian, static,
(i.e. it does not depend on o) and requires only a summation up
to Nocc (the number of occupied electronic states); instead the
use of the GW approximation (see the definition of the Green’s
function G(1) in eqn (2)), requires a summation over all the states
(occupied and empty). However, the COHSEX approximation is
known to overestimate the electronic gaps of several materials,19

despite some recent improvements.46 We note that in most
computational applications,29,30,47 a static approximation to
the self-energy is used to represent the kernel of the Bethe–
Salpeter equation (see eqn (15)), as discussed in Section 3.

As mentioned in Section 1, in first principles calculations
the KS energy levels and orbitals are often used to build
approximations to the Green’s functions and response functions
and hence to W. The screened Coulomb potential W is a
fundamental ingredient both for the solution of the Dyson’s
equation in the GW approximation, and for the solution of the
Bethe–Salpeter equation. Therefore in the next section we
describe in detail how W is evaluated in practical calculations
starting from KS orbitals (see Table 4 for a summary).

2.7 Dielectric matrices and polarizabilities

The key quantity entering the definition of the screened Coulomb
potential (eqn (24)) is the dielectric matrix E. The main purpose of
this section is to discuss how E is approximated in first principles
calculations based on MBPT. These approximations will then be
used in Section 3, where we describe practical implementations of
the GW approximation and the Bethe–Salpeter equation. We first

discuss the calculation of the static E (o = 0) and later we will
illustrate practical approaches adopted to introduce dynamical
effects. The response functions discussed here are retarded
response functions (see Section 2.5); however, in order to simplify
the notation the subscript ‘‘r’’ is not included. We emphasize again
that in the static limit (o = 0) there is no difference between time-
ordered and retarded Green’s functions.

In most first principles MBPT calculations the dielectric
matrix E is computed using KS single-particle orbitals and
energies.19,29,47–49 Hence before discussing E, we summarize
the definition of polarizabilities within DFT. The Kohn–Sham
equations of DFT have the following form:5

�1
2
r2 þ VKSðrÞ

� �
fjðrÞ ¼ eKS

j fjðrÞ: (35)

where fj and eKS
j are KS orbitals and KS single particle energies,

respectively, and we have defined the KS effective potential:

VKSðrÞ ¼ VHðrÞ þ VxcðrÞ þ Ve�I ðrÞ

¼
Z

rðr0Þ
jr� r0jdr

0 þ dExc½n�
dnðrÞ þ Ve�I ðrÞ:

(36)

In eqn (36) r(r) is the electronic density, VH is the Hartree
potential, Vxc is the functional derivative with respect to the
density of the exchange–correlation (xc) energy functional Exc,
and Ve–I is the external Coulomb potential due to the atomic
nuclei. If the exact Vxc were known, the self-consistent solution
of eqn (36) would give the exact density of the many-electron
system. The density is expressed as:

rðrÞ ¼
XNocc

j¼1
f�j ðrÞfjðrÞ; (37)

where the sum is over the number of occupied orbitals Nocc. In
practice, approximations are used for Exc. Even simple approxi-
mations, such as the local density approximation (LDA), may
lead to accurate results for several ground state properties of
realistic materials.4

Table 4 Theoretical approximations (second row) and algorithmic challenges (fourth
row) involved in the calculation of photoemission and absorption spectra. Quasiparticle
energies and absorption spectra are defined in the third row of the table
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As a consequence of fundamental theorems3 of DFT, the
response of the KS density to a static perturbation Vext is
the same as that of the full many body system. The response
of the electronic density can be written as

r0ðrÞ ¼
Z

w0ðr; r0ÞV 0KSðr0Þdr0; (38)

where

V 0KSðrÞ ¼ VextðrÞ þ V 0HðrÞ þ V 0xcðrÞ; (39)

and we assumed that the position of atomic nuclei is not
modified by the application of the perturbation V 0e�I ¼ 0

� �
; w0

is the static RPA irreducible polarizability, which has the
following explicit form:

w0 r; r0ð Þ ¼
X
jk

ðnk � njÞ
f�kðrÞfjðrÞf�j ðr0Þfkðr0Þ

eKS
k � eKS

j þ iZ
: (40)

Here fj and fk are KS orbitals and eKS
j and eKS

k are KS energies
(see eqn (35)); nj and nk are the occupation numbers of the
states j and k, respectively. If j an k are both occupied or both
empty states, their contribution to w0 vanishes. Note that in the
static limit (o = 0) and within an approximation of G(1) based
on DFT (i.e. when approximating the Lehmann amplitudes and
energies of eqn (2) by fj and eKS

j , respectively), eqn (32) and (40)
are equivalent. In eqn (39) we have introduced the first-order
response of the Hartree and xc potential induced by the
application of Vext:

V 0HxcðrÞ ¼ V 0HðrÞ þ V 0xcðrÞ

¼
Z

uðr; r0Þr0ðr0Þdr0 þ
Z

Kxcðr; r0Þr0ðr0Þdr0
(41)

where Kxc = dVxc/dr is the functional derivative of the xc
potential with respect to the density, evaluated at the ground-
state density. By comparing the density response expressed by
eqn (38) to the definition of eqn (18) (with o = 0, and using
w = LR), we obtain the following relation, by means of eqn (41):

w = w0 + w0(u + Kxc)w. (42)

Here the coordinate dependence and the integrals over space
coordinates are implicit. The term (u + Kxc) describes correla-
tion effects, absent in the non-interacting KS polarizability w0.
Indeed, by setting (u + Kxc) to zero, in eqn (42) we obtain w = w0.
Eqn (42) may be used to express w in terms of w0:

w = (1 � w0u � w0Kxc)�1w0. (43)

Having derived an explicit expression for w, we finally
determine the inverse dielectric matrix entering eqn (21) and
defining the screened Coulomb interaction. By interpreting the
KS response potential V 0KS in eqn (39) as the effective potential
V 0scr acting on the electrons, we can easily derive the result

E�1 ¼ 1þ ðuþ KxcÞw; (44)

this expression of E is obtained for the case in which the
electrons themselves are the probe of the system response.50

In most practical implementations of first principles many

body perturbation theory the random-phase approximation
(RPA) is used for E�1 instead of the full DFT expression of
eqn (42). The RPA consists in discarding the term Kxc in
eqn (42) and leads to the following expression of E�1:

E�1RPA ¼ 1þ uw ¼ 1þ uð1� w0uÞ�1w0 (45)

that can also be written in the more common form:

ERPA ¼ 1� uw0: (46)

In several first principles MBPT calculations the frequency
dependence of E is described by using models, such as the
plasmon-pole model,21,51 which will be discussed in detail in
Section 3.1.1. Alternatively, by defining the RPA independent
electron dynamical polarizability

w0ðr; r0;oÞ ¼
X
jk

nk � nj
� �f�kðrÞfjðrÞf�j ðr0Þfkðr0Þ

oþ eKS
k � eKS

j

� �
þ iZ

; (47)

an equation formally identical to eqn (42) may be derived for
the frequency dependent w. However, in this case the derivation
must be carried out within the time-dependent density func-
tional theory framework, and the kernel Kxc depends explicitly13

on the energy o. For practical purposes the adiabatic approxi-
mation Kxc E Kxc(o = 0) is adopted in most cases.52 The
definition of the RPA dielectric matrix given in eqn (45) and
(46) is valid also in the dynamical case. The solution of eqn (42)
or the analogous RPA equation (Kxc = 0) could be used to
describe the optical spectra at the TDDFT and DFT-RPA levels
of theory.

3 Algorithms to compute quasi-particle
energies and optical spectra

Having established the theoretical framework of MBPT, we
discuss below the main algorithms used in first principles
calculations to compute photoemission and absorption spectra
(see Table 4). Our discussion is split into three parts and
includes algorithms to compute the dielectric matrix, the self-
energy, and to solve approximate forms of the BSE.

3.1 Algorithms to compute dielectric matrices

The algorithms discussed in this section are divided into
methods where explicit summations on empty states are per-
formed (Section 3.1.1) and methods that avoid these explicit
summations (Section 3.1.2) by using, e.g. density functional
perturbation theory.

3.1.1 Direct calculation of dielectric matrices. Most calcu-
lations of dielectric matrices are based on a plane wave(PW)
representation21,50,53,54 of the orbitals and density, although
calculations using localized orbitals have been proposed in the
literature.55–57 With PW basis sets, both periodic systems and
molecules can be treated in a straightforward way, by using a
supercell approach. Here we discuss practical calculations of
dielectric matrices using a plane-wave basis set for the KS
orbitals and charge density. However, our discussion is general
and valid irrespective of the basis set chosen.
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Within a plane-wave representation,

E�1ðr; r0Þ ¼ 1

O

X
q;G;G0

eiðqþGÞ�rE�1G;G0 ðqÞe�iðqþG
0Þ�r0 ; (48)

where O denotes the crystal volume, q is the transferred
momentum and G and G0 are the reciprocal lattice vectors.
The limit q - 0 is well defined, as discussed in ref. 50 and 54,
but for G0 = G = 0 the calculation of E�1 requires a special
treatment. For a homogeneous system, E depends only on
|r � r0| and is diagonal in reciprocal space (E(G, G0) = 0 for
G a G0). For an inhomogeneous system, the off-diagonal
elements E(G, G0) yield the so called local field effects.

The first step to compute E�1G;G0 is the evaluation of the
irreducible polarizability w0 (eqn (40)):

w0ð ÞG;G0 ðqÞ ¼
4

O

X
c;v;k

fvkje�iðqþGÞ�rjfckþq

D E
fckþqjeiðqþG

0Þ�r0 jfvk

D E
eKS
vk � eKS

ckþq

(49)

where a factor 2 has been introduced to account for spin
degeneracy and the indexes v and c label valence and conduc-
tion states, respectively, in the case of a solid. (In the case of
molecules, v and c represent occupied and virtual states,
respectively). Eqn (49) is the Adler–Wiser formulation58,59 of
w0. The evaluation of w0 using eqn (49) requires the explicit
calculation of the conduction states fc. In principle
all the empty states of the KS Hamiltonian should be included
in the summation. In practical calculations only a finite
number of them is included and the convergence of the
sum is systematically tested. In addition, the expression
of eqn (49) requires the evaluation of all possible combi-
nations of c, v, k, and q. The calculation of the integralsR
f�vkðrÞe�iðqþGÞ�rfckþqðrÞdr scales as N2

pw �Nc �Nv �Nk �Nq

where here Npw is the number of basis functions (plane-waves)
used to represent the charge density; Nc and Nv is the
number of conduction and valence states, respectively and
Nk and Nq are the number of k and q points (defined as
the difference between k points) included in the BZ summation.
(For calculations of molecules and clusters one uses only
the k = (0,0,0) point and Nk = Nq = 1). Once w0 is obtained,
E�1 is computed through eqn (45), which requires the
inversion of the matrix (1 � w0u) and a subsequent matrix
multiplication. The number of reciprocal G vectors (that
determines the dimension of w0) used in first principles
calculations is often large (many thousands) even for systems
with a relatively small number of electrons, and the direct
inversion of E becomes very demanding. If the dielectric matrix
is computed for multiple frequencies, the inversion must be
repeated for each frequency.

For example, in the calculation of quasi-particle energies
within the GW approximation, dynamical effects are included
in the screened Coulomb potential by evaluating the inverse
dynamical dielectric matrix E�1(o), which thus needs to be
inverted for each o. Furthermore E�1 has poles on the real o
axis. To overcome these difficulties several numerical

implementations use a plasmon-pole model (PPM), where the
dependence of E�1 on o is described by a single plasmon-pole:

E�1G;G0 ðq;oÞ � dGG0 þ
RGG0 ðqÞ

o� ~oGG0 ðqÞ þ iZ
� RGG0 ðqÞ
oþ ~oGG0 ðqÞ � iZ

;

(50)

where RGG0 and ~oGG0 are parameters to be determined for
each specific system. Once eqn (45) is solved, the value of
E�1G;G0 (q,o = 0) can be used to fix one of the two parameters in

eqn (50) (this operation is required for each value of GG0,
and q). In the plasmon-pole approximation proposed by Hybertsen
and Louie21 the f-sum rule is used as a constraint for the
determination of the remaining parameter. In the approach
proposed by Godby and Needs51 the remaining parameter is deter-
mined by computing E�1 for an additional imaginary frequency
(io). The PPM approach considerably simplifies the numerical
workload necessary to include dynamical effects in quasi-particle
calculations. However, the accuracy of the PPM to compute GW
quasi-particle energies is difficult to assess, and the results may
considerably depend on the choice of the specific model.22,60

Alternatively, one may solve eqn (45) starting from the
dynamical polarizability w0 defined in eqn (47). Since w0 and
the inverse dielectric matrix E�1 have poles on the real axis, they
are usually computed on the imaginary axis (o - io).20,48 On
the imaginary axis E�1 is a smooth function of o and the
integrals necessary to evaluate the self-energy S are easier to
compute. The expectation value of the self-energy on the
imaginary axis is then fitted to a multipole function, which is
used to evaluate the final result for real energies.

3.1.2 Projective dielectric eigenpotential method. Recently
an alternative approach was introduced for the calculation61,62

of the dielectric matrix E called projective dielectric eigen-
potential method (PDEP). Applied so far within the RPA
approximation, this approach is based on the iterative
diagonalization of the dielectric matrix and is of general validity
beyond the RPA. At each iterative step, the dielectric matrix is
applied to an approximate set of eigenvectors using density-
functional perturbation theory (DFPT).54 The method was first
used to compute E for the evaluation of ground-state correlation
energies,63,64 and more recently it was incorporated in many
body perturbation theory calculations.24,31,34

The dielectric matrix E is not Hermitian and it is convenient
to introduce the following symmetrized form:

�EG;G0 ðqÞ ¼
jqþ Gj
jqþ G0jEG;G

0 ðqÞ: (51)

The matrix �E is easier to handle from a numerical point of
view, since iterative algorithms to diagonalize Hermitian
matrices, such as the Davidson algorithm,65 are in general
more stable and efficient than those used for non-Hermitian
matrices. Within PDEP one considers a spectral decomposition
of �E:

�E ¼
XNeig

i¼1
li Uij i Uih j ¼

XNeig

i¼1
li � 1ð Þ Uij i Uih j þ I : (52)
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where the eigenvectors (or eigenpotentials) Ui and eigenvalues
li are obtained iteratively.

A number Neig of random trial potentials U0
i is first gener-

ated and then orthonormalized. Starting from this guess, an
iterative algorithm, such as Davidson65 or Ritz acceleration, is
used to diagonalize �E. At each iteration (iter) the dielectric
matrix is applied to the current approximation of the eigen-

potentials Uiter
i : ð�E� IÞU iter

i ¼ �u
1
2w0u

1
2U iter

i ¼ �u
1
2r0, where r0 is

determined from:

r0ðrÞ ¼ 4Re
XNocc

j¼1
f�j ðrÞf0jðrÞ; (53)

and

ĤKS � eKS
j

� �
jf0ji ¼ �Q̂V 0KSjfji (54)

by setting V 0KS ¼ u
1
2U iter

i . In eqn (53) and (54) Q̂ is the projector
onto the virtual state subspace, V 0KS is defined in eqn (39), and

f
0
i represents the linear response of KS orbitals. Once

the required accuracy in the diagonalization is reached, the
iterative procedure is stopped.

The eigenvalue decomposition of eqn (52) is useful for
practical purposes only if the number of eigenpotentials Neig

necessary to approximate �E is much smaller than the dimension
of the full matrix.66 The eigenvalues li are larger than or equal
to 1 and for many systems61,62 they rapidly decay to 1 as a
function of the index i. This finding implies that (li � 1) rapidly
goes to 0 as a function of i and the summation in eqn (52) can
be truncated to a small number Neig. Recent GW and BSE
calculations24,31,34 demonstrated that the number Neig is
indeed much smaller than the size of the full matrix �E for
several classes of systems.

The use of eqn (52) to represent the dielectric matrix
has several advantages: a small number of eigenpotentials
needs to be stored in memory instead of the full matrix �E;
the size of �E as function of the number of PWs does not need to
be truncated, and the inversion of the dielectric matrix is
avoided. Furthermore, the eigenvalue decomposition of �E is
obtained within DFPT and does not require the explicit inclu-
sion of virtual (empty) states in any summation: all the virtual
states described by the chosen basis set are automatically
included.

The PDEP procedure may also be applied to compute
the frequency dependent dielectric function. In the case of
imaginary frequencies, the operator on the left hand side of
eqn (54) is (ĤKS � eKS

i � io). The corresponding linear problem
is no longer Hermitian and can be solved by a biconjugate
gradient algorithm. The eigenvalue decomposition is carried
out63 for each value of o.

An alternative, more efficient approach consists in using the
eigenpotentials {Ui} at o = 0 as a basis set for �w0ðioÞ ¼

u
1
2w0ðioÞu

1
2; the definition of �w0 is computationally more con-

venient than that of w0, and it is similar to the definition of �E.

The expansion coefficients �wij0ðioÞ ¼
R
UiðrÞ�w0ðr; r0; ioÞUjðr0Þdrdr0

are expressed in the form:24

�wij0 ðioÞ

¼ 2
XNocc

k¼1
fkðu

1
2UiÞ Q̂ðĤKS � eKS

k � ioÞ�1Q̂
��� ���fkðu

1
2UjÞ

	 

þ c:c:

� �

(55)

and they can be efficiently computed by using the Lanczos

algorithm.67 By introducing �wðioÞ ¼ u
1
2wðioÞu

1
2 from eqn (42) in

the RPA approximation (Kxc = 0) we have �w = (1 � �w0)�1�w0. This
equation can be easily solved to compute �w and the reducible
polarizability, and the basis set {Ui} is usually much smaller
than that used for the wavefunctions and density.

3.2 Algorithms to compute the self-energy

Similar to the previous section we first discuss methods
where explicit summations on empty states are performed
(Section 3.2.1) and then methods that avoid these summations
(Section 3.2.2). Recent developments beyond the G0W0 approxi-
mation are presented in Section 3.2.3.

3.2.1 G0W0 calculations based on direct summations.
Calculations of quasi-particle energies of realistic systems
within the GW approximation have been performed both in
the time domain (eqn (30))68 and in the frequency domain
(eqn (33)).20,21 In particular, the time domain approach68 takes
advantage of the simple multiplicative form of the self-
energy (eqn (30)) and of the polarizability in eqn (32), within
a real space and (imaginary) time representation. However, it
includes FFT transforms of E from imaginary frequencies and
reciprocal space to real time and space, and summations over
empty states are not avoidable in any straightforward way.

The solution of eqn (9) with the self-energy approximated at
the GW level of theory (eqn (33)) is numerically challenging for
several reasons: the GW self-energy depends on the solution of
the Dyson’s equation, and explicitly on the energy; in addition,
it is non-local in space. Most of practical implementations are
based on the G0W0 approach.19,21 Within this scheme the
Green’s function (eqn (2)) is evaluated by approximating the
quasi-particle amplitudes with KS orbitals and the quasi-parti-
cle energies with KS energy levels:

Gð1Þ r1; r2;oð Þ �
X
j

fj r1ð Þf�j r2ð Þ

o� eKS
j þ iZsgn eKS

j � eF
� �: (56)

The screened Coulomb potential is approximated by using
the inverse dielectric matrix in eqn (45); when using the KS
orbitals to evaluate the screened Coulomb potential, one uses
the notation W0 instead of W. The effects of the dynamical
screening are often introduced by a plasmon-pole model
(eqn (50)) or by evaluating E on the imaginary axis. The quasi-
particle energies are then computed as corrections to KS
eigenvalues by using first order perturbation theory:

eGW
j = eKS

j + hfj|S(eGW
j ) � Vxc|fj i (57)
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Eqn (57) must be solved self-consistently in eGW
j ; alterna-

tively, using a Taylor expansion one has eGW
j E eKS

j + Zj

hfj|S(eKS
j ) � Vxc|fji with Zj ¼ 1� fj j@S=@eje¼eKS

j
jfj

D Eh i�1
.

The G0W0 approximation implicitly assumes that KS orbitals
are a reasonably accurate representation of quasi-particle wave-
functions. In principle there is no sound theoretical justifica-
tion for this assumption. In practice the G0W0 approximation
has been shown to work reasonably well for a variety of periodic
solids.19–21 For molecules the use of this approximation is more
controversial69 but overall it has given accurate results for the
ionization potentials of several systems.24–26

For computational convenience, one normally writes iGW =
iGu + iGuwu � Sx +Sc, where the term iGu is the Hartree–Fock
self-energy Sx (eqn (10)). The evaluation of the expectation value of
Sx is equivalent to evaluating the exchange term in the Hartree–
Fock theory but using DFT orbitals instead of self-consistent HF
orbitals. In quantum chemistry codes, this operation is efficiently
performed with localized basis, but it is not straightforward in a
plane wave representation; in particular care must be exercised to
integrate divergences.63,70 The most expensive component of
G0W0 calculations is the evaluation of Sc, which requires summa-
tions over virtual states of the KS Hamiltonian. These sums are
necessary to evaluate both eqn (56) and (40) (or equivalently
eqn (49)). In particular it has been shown that the convergence
of G0W0 can be extremely slow both for some bulk materials, e.g.
ZnO60,71 and molecular systems, e.g. benzene.25

Unless a PPM is used, the sum over states in the screened
Coulomb potential must be evaluated for each value of o0; in
the case of G(1) it must be evaluated for each value of (o + o0)
(namely on a mesh twice as large as that of the o domain). The
convolution in eqn (33) can then be computed through a direct
integration or a Fourier transform.

3.2.2 G0W0 calculations based on the spectral decomposi-
tion of the dielectric matrix. To avoid the explict summations
over a large number of virtual states required for the calculation
of the GW self-energy Sc, one may use the PDEP technique. We
rewrite eqn (56) as:

Gð1ÞðioÞ � 1

ĤKS � io
: (58)

We then use the definition of the GW self-energy in the
frequency domain (eqn (33)) and the expansion of the dielectric
matrix in terms of the static eigenpotentials (see Section 3.1.2);
we arrive at the following expression for the expectation value
of Sc for imaginary frequencies:

fkjScðioÞjfkh i

¼ i

2p

XNeig

i;j¼1

Z
do0�wijðio0Þ fkðu

1
2UiÞ ĤKS� iðoþo0Þ

 ��1��� ���fkðu
1
2UjÞ

	 

;

(59)

the coefficients �wij are computed from eqn (55) by using the
definition �w = (1� �w0)�1�w0. In eqn (59) the matrix element can be
computed with the Lanczos algorithm proposed in ref. 26 and
27. Such algorithm has the advantage that only a single iterative

Lanczos chain is performed for all the frequencies (o + o0).
Within this approach all summations over the virtual states are
avoided, and all the virtual states described by the chosen basis
set are implicitly included. In addition the convergence of the
calculation is controlled by a single parameter: Neig (eqn (52)).

The computational workload61–63 to generate the dielectric
matrix with Neig eigenvectors scales as Niter � Neig � Npw � Nv

2,
with Niter being the number of iterations needed to converge
the dielectric eigenvectors in the iterative diagonalization pro-
cedure (Niter is typically not more than 10 for systems with tens
to several hundred electrons). In addition, the cost of Lanczos
chains generation to compute �w0 and Sc is NLanczos � Neig �
Npw � Nv

2 where NLanczos is the number of Lanczos iterations,
which is typically just a few tens. Therefore the total workload
of our approach is (Niter + NLanczos) � Neig � Npw � Nv

2, and it is
proportional to the fourth power of the system size.

This workload represents a substantial improvement over
that of conventional approaches (with explicit sums over all the

conduction states), N2
pw � Nv� Nc, which is also proportional to

the fourth power of the system size, but with a substantially
larger prefactor. The number of occupied states Nv is often an
order of magnitude smaller than the number of unoccupied
states Nc required to converge summations in the dielectric
matrix and Green’s function. Furthermore, the number of
eigenvectors Neig is usually several orders of magnitude smaller
than the number of PWs.

Recently, in addition to PDEP several other techniques were
proposed, to improve the efficiency of GW calculations by
removing the explicit summations over empty states entering
the expression of Sc. For example, the approach of ref. 25 and 26
uses an optimal basis set to represent the polarizability; a
Lanczos algorithm is then adopted to numerically compute an
expression similar to eqn (59). In order to eliminate the summa-
tion over virtual states necessary to compute the optimal basis
set, in ref. 26 the projector onto the virtual state subspace, Q̂, was
approximated by an expansion in plane-waves orthogonalized to
the occupied state subspace. DFPT was also used in ref. 72 to
avoid the calculation of empty states: the inverse dielectric

matrix E�1G;G0 (q,o) was computed by solving eqs (54) for each

perturbation, namely for each set of parameters [q,G,o]. The
solution of such equation for all possible perturbations is
computationally very demanding with PW basis sets, but it can
be efficiently implemented in a localized basis set approach.73 In
ref. 74 and 75 the summation over empty states in the GW self-
energy was avoided by defining and systematically approximat-
ing an effective energy that takes into account the contribution
of all empty states. Finally we would like to mention that other
approaches were proposed that, while retaining summations
over empty states, attempt to reduce the number of unoccupied
states needed76 to reach convergence, or to approximate them by
a combination of plane-waves and resonant orbitals.77

3.2.3 Self-consistent GW calculations and vertex correc-
tions. The G0W0 approach was used in most implementations
appeared so far in the literature. However, fully or partially
self-consistent calculations were performed using either the
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full energy dependent GW self-energy69,78 or a static approxi-
mation.79,80 In some cases partial self-consistency was included,
by approximating the quasi-particle wavefuntions at the DFT level
of theory and performing a self-consistent calculation only on the
energy levels (in G, in W, or in both).81,82 In ref. 83, it was
suggested that GW quasi-particle wavefunctions can be accurately
approximated by those obtained in self-consistent COHSEX
calculations (eqn (34)); this approach was applied to bulk silicon,
aluminum, and argon and gave reasonable estimates of self-
consistent GW results, at a much lower computational cost. The
usefulness of the GW self-consistent approach is still contro-
versial; in some cases it was proven to decrease significantly the
dielectric screening and to worsen the agreement between theory
and experiment,84 with respect to G0W0.

Some implementations also attempted to go beyond the GW
approximation and introduce vertex corrections by improving
the approximation of G in eqn (29). A possible practical way to
proceed consists in approximating the initial self-energy by the
DFT (LDA) exchange and correlation potential S(1,2) =
Vxc(1)d(1,2).85 After an iterative step of the Hedin’s equations,
one obtains an expression formally similar to the GW approxi-
mation (eqn (33)). However, in this case the reducible polariz-
ability w is approximated through eqn (42) and the screened
Coulomb potential is obtained by using the inverse dielectric
matrix in eqn (44). This formalism, called GWG, was applied to
compute the quasi-particle spectrum of silicon and it was
suggested that, although the computed quasi-particle gap is
similar to that of the G0W0 approach, the vertex corrections
might introduce substantial changes in the absolute position of
the energy levels.85,86 In ref. 87 it was shown that the GWG
method improves the agreement with experiment for the values
of the ionization potentials and electron affinities of several
molecules (e.g. benzene and naphthalene) and it was also
applied to the study of silicon nanoparticle electronic proper-
ties as a function of diameter.

3.3 Algorithms to solve the Bethe–Salpeter equation and
compute optical spectra

In this section we first define the physical quantities related to
optical absorption measurements in molecules and solids
(Section 3.3.1) and we then present algorithms to solve the
BSE and compute absorption spectra (Section 3.3.2). We close
this section by comparing time dependent DFT and the BSE
(Section 3.3.3).

3.3.1 Macroscopic polarizability and macroscopic dielectric
function. In optical absorption or reflectivity experiments, for
example by UV-vis spectrometry or ellipsometry, the intensity of
the electromagnetic field of the incident light is much weaker
than that of internal fields, and it can be treated within linear
response theory. Here we discuss how the response functions
that describe optical absorption experiments are calculated.

In molecules the macroscopic polarizability tensor aij relates
the induced dipole (d0) and the applied field E:

d 0i ðoÞ ¼
X
j

aijðoÞEjðoÞ; (60)

where i and j indicate Cartesian coordinates; a is related to the
retarded reducible polarizability (eqn (20)), by the equation
a ¼

R
rwðr; r0Þr0 dr dr0, where the external perturbing potential is

Vext = �E(o)�r0, and r is proportional to the dipole induced in
the system. The absorption coefficient I(o) is proportional to
the imaginary part of the trace of the dynamical polarizability
tensor: I(o) p oIm(Tr(a(o))). For an isolated molecule there is
no preferred orientation and one averages over the diagonal
components of the macroscopic polarizability.

In the case of solids the optical absorption spectrum is given by
the imaginary part of the macroscopic dielectric function, which is
related to the dielectric matrix (a microscopic quantity) by:58,59

EM ¼ lim
q!0

1

E�1G¼0;G0¼0ðq;oÞ
: (61)

In principle eqn (61) requires the calculation of the full
dielectric matrix and its inversion to obtain the single matrix
element in the denominator. In practice, as shown in ref. 61, the
value of EM (or a) may be obtained by computing the matrix
element of the resolvent of an effective two-particle operator (such
operator will be discussed below in Section 3.3.2); the eigenvalues
of this operator correspond to the excitation energies of the system.

3.3.2 Density matrix perturbation theory formulation of
the Bethe–Salpeter equation. Here we derive a specific form
of the BSE using linear response theory applied to density
matrices, and we present practical ways of computing neutral
two-particle excitation energies as eigenvalues of an effective
two-particle operator. The approach presented below may be
considered as equivalent to solving a time-dependent Dyson’s
equation. We note that the formalism presented here may not
be used to solve the full BSE of eqn (14); indeed only the
response function w of eqn (20) is considered, instead of the full
(four-indexes) correlation function of eqn (13). As discussed in
Sections 2.4 and 2.5, the response function w is sufficient to
describe optical absorption experiments. The starting point of
our derivation is the quantum-Liouville equation (for simplicity
we omit k-point labeling of states):

i
dr̂ðtÞ
dt
¼ ĤðtÞ; r̂ðtÞ
 �

; (62)

where the square brackets indicate commutators. Within a real

space representation, we have rðr; r0; tÞ ¼
PNocc

j¼1 fjðr; tÞf�j ðr0; tÞ;
here we use f to indicate time-dependent orbitals and f1 to
indicate unperturbed ground-state orbitals. The time-dependent
quasi-particle Hamiltonian is:Z

Ĥðr; r0; tÞfðr0; tÞdr0

¼ �1
2
r2 þ VHðr; tÞ þ Ve�I ðrÞ þ Vextðr; tÞ

� �
fðr; tÞ

þ
Z

Sðr; r0; tÞfðr0; tÞdr0;

(63)

where we assumed that the electron-ion potential is not
modified by the external potential Vext(r,t). We consider a static
approximation to the self-energy, hence S depends on time only
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through the dependence on r̂(t). The static approximation is
justified in the case of the COHSEX self-energy (eqn (34)) but
not for the GW self-energy (eqn (33)), that includes dynamical
effects and depends explicitly on G(1). The quasi-particle ampli-
tudes fj in eqn (3) and (4) are approximated by KS orbitals, as
usually done in practical implementations to solve the
BSE.29,47,88,89 However, the derivation below is valid in general
as long as the {fj(r)} are an orthonormal basis set.

By considering V̂ext in eqn (63) as a small perturbation, the
linearization of eqn (62) leads to:

i
dr̂0ðtÞ
dt
¼L � r̂0ðtÞ þ V̂extðtÞ; r̂	

 �
; (64)

L � r̂0ðtÞ ¼ Ĥ
	
; r̂0ðtÞ

h i
þ V̂

0
H r̂0½ �ðtÞ; r̂	

h i
þ Ŝ

0½r̂0�ðtÞ; r̂	
h i

;

(65)

where variables with superscript ‘‘o’’ represent unperturbed
quantities, and those with prime denote linear variations;
specifically in this case r̂0 = r̂ � r̂o denotes the linear variation

of the charge density. Note the dependence of V̂H and Ŝ on the
linear-response of the density matrix r̂0. In eqn (65) a non-
Hermitian operator L acting on r̂0 has been defined, which is
known as Liouvillian super-operator,67,90 as its action is defined
on a space of operators (the density matrices). By Fourier
transforming eqn (65) into the frequency domain, one obtains

(o � L)�r̂0(o) = [V̂ext(o), r̂o]. (66)

The solution of this equation yields r̂0(o). If in eqn (66) the
external perturbation is set to Vext(r,o) = �E(o)�r, the response
of the i-th component of the dipole in eqn (60) can be obtained
as d 0i ðoÞ ¼ Tr r̂ir̂0ðoÞð Þ, where Tr indicates the trace operator. By
solving explicitly eqn (66), we obtain the components of the
polarizability tensor:

aij(o) = � hr̂i|(o � L + iZ)�1�[r̂j, r̂
o]i; (67)

where Z is a positive infinitesimal, and we wrote the scalar
product of two operators A and B as hÂ|B̂i � Tr(Â†B̂). The
excitation energies of the system are obtained by diagonalizing
L (indeed the excitation energies correspond to the poles of
the response function).

The formalism introduced here can be applied to any
approximation of the non-local and static self-energy operator
S(r, r0, o = 0) (see Table 5).

If S(r,r0) = Vxc(r)d(r � r0) the adiabatic TDDFT formalism is
recovered.67,90 Here we consider the COHSEX self-energy given
in eqn (34) and we call the corresponding Hamiltonian HCOHSEX.
Since this self-energy depends explicitly on the density matrix, it
can be easily linearized and inserted in eqn (65). This approach
can be considered as a time-dependent COHSEX method and the
corresponding equations are equivalent to the BSE with static
screening in the electron–hole interaction.

3.3.2.1 Electron–hole representation. The practical solution of
eqn (67) requires a basis set for r̂0. A commonly used one is the
ensemble of occupied and virtual states of the unperturbed
Hamiltonian, as the only non zero matrix elements of r̂0 are

those between unperturbed occupied and virtual orbitals:67

hf	c jr0jf	vi and hf	vjr0jf	ci. Note that f	vj r̂j ; r̂	
 �

jf	v0
� �

¼
f	c j r̂j ; r̂	
 �

jf	c0
� �

¼ 0, 8 v, v0 and c, c0; f	vjr̂ijf	v0
� �

a0 and

f	c jr̂ijf	c0
� �

a0, however one needs only the matrix elements

f	c jr̂ijf	v
� �

and f	vjr̂ijf	c
� �

when computing67 the scalar product
(trace) in eqn (67).

This so called electron–hole basis set is used in many
current implementations to solve the BSE.29,30,47,91–93 Within
this framework, for spin singlet excitations the operator L

takes the form:30

L ¼
Dþ 2K1x �K1d 2K2x �K2d

�2K2x� þK2d� �D� 2K1x� þK1d�

0
@

1
A; (68)

where D, the exchange terms K1x and K2x and the direct terms
K1d and K2d are defined as

Dvc;v0c0 ¼ ðec � evÞdvv0dcc0 ; (69)

K1x
v0c;v0c0 ¼

Z
f	�c ðrÞf	vðrÞ

1

jr� r0jf
	�
v0 ðr0Þf	c0 ðr0Þdrdr0; (70)

K1x
v0c;v0c0 ¼

Z
f	�c ðrÞf	vðrÞ

1

jr� r0jf
	�
v0 ðr0Þf	c0 ðr0Þdrdr0; (71)

K1d
vc;v0c0 ¼

Z
f	�c ðrÞf	c0 ðrÞWðr; r0Þf	�v0 ðr0Þf	vðr0Þdrdr0; (72)

K2d
vc;v0c0 ¼

Z
f	�c ðrÞf	v0 ðrÞWðr; r0Þf	�c0 ðr0Þf	vðr0Þdrdr0; (73)

and W is the statically screened Coulomb interaction (namely
the static limit of the Fourier transform of eqn (24)). In eqn (69)
ec (conduction) and ev (valence) are quasi-particle energies.
In principle these energies should be approximated at the
COHSEX level of theory, for consistency with the choice of

Table 5 The choice of the self energy (first column) in the solution of the
quantum Liouville equation within first order perturbation theory (see eqn (63)),
determines the level of theory used in the calculation of absorption spectra
(second column), including time-dependent (TD) Hartree–Fock (HF) and density
functional theory (DFT) and the Bethe–Salpeter Equation (BSE) (see text)
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the Hamiltonian; in practice a more accurate approximation
may be chosen and usually the GW approximation is adopted to
evaluate the term D in eqn (69).

The matrix form of the operator L, as defined by eqn (69)–
(73), can be diagonalized to obtain the excitation energies of the
system. Alternatively, a linear system involving L can be solved
in order to compute the macroscopic polarizability defined by
eqn (67). Note that the operator L in eqn (67) is non-Hermitian
and thus the solution of the corresponding eigenvalue problem
may not be achieved by using iterative solvers adopted for
Hermitian problems. For this reason Hermiticity is often
enforced by neglecting the off-diagonal blocks of L;
this approximation is known as the Tamm–Dancoff approxi-
mation (TDA).94 The TDA greatly reduces the computational
complexity of the BSE solution and has successfully predicted
the absorption spectra of several solids.29,30,47,95–97 However,
the TDA does not always hold: for example it does not account
for plasmons in solids98 and it breaks down for some
confined systems,34,99,100 such as carbon nanotubes100 and
silicon clusters.34

The definition of L through eqn (69)–(73) requires the
calculation of the unoccupied single particle states (virtual
orbitals) of the unperturbed Hamiltonian and the corres-
ponding matrix must be explicitly evaluated and stored. A
large number of virtual orbitals f	c is usually necessary for
calculations that require the evaluation of a spectrum in a large
energy range and/or involve large systems; even for small
molecules, obtaining converged spectra may be challenging,
in cases where the inclusion of many virtual states is
necessary.101

3.3.2.2 Use of density functional perturbation theory. The
explicit inclusion of virtual orbitals f	c may be avoided with
the use of DFPT.54 In this framework one considers the
projector operator onto the unperturbed empty state subspace

Q̂ ¼ Î � P̂ � Î �
PNocc

j¼1 jf
	
j ihf	j j; where Î is the identity operator;

the evaluation of Q̂ only requires the evaluation of the occupied
states f	v. At variance from the electron–hole representation,
the operators entering eqn (66) (r0, r̂i and [r̂j, r̂

o]) are expressed
in the so-called batch representation,34,67 and eqn (69)–(73)
become:

Dv;v0 jav0 i ¼ Ĥ
	
COHSEX � ev0

� �
dv;v0 jav0 i; (74)

K1x
v;v0 jav0 i ¼ Q̂

Z
1

jr� r0jf
	�
v0 ðr0Þav0 ðr0Þdr0

� �
jf	vi; (75)

K2x
v;v0 jbv0 i ¼ Q̂

Z
1

jr� r0jb
�
v0 ðr0Þf	v0 ðr0Þdr0

� �
jf	vi; (76)

K1d
v;v0 jav0 i ¼ Q̂

Z
Wðr; r0Þf	�v0 ðr0Þf	vðr0Þdr0

� �
jav0 i; (77)

K2d
v;v0 jbv0 i ¼ Q̂

Z
Wðr; r0Þb�v0 ðr0Þf	vðr0Þdr0

� �
jf	v0 i; (78)

where for a generic operator Â, the so called ‘‘batch’’ compo-
nents |av0i and |bv0i are defined as:

javi ¼ Q̂Âjf	vi (79)

hbvj ¼ hf	vjÂQ̂: (80)

The index v runs over the number Nocc of occupied states.
Hence in this representation no calculation of virtual orbitals is
necessary. As a result the required computational workload is
comparable to that of a ground state HF calculation. Specifically,
in a plane wave (PW) representation, the evaluation of K1d and
K1d scales as k[Nv

2 � Npw � ln Npw], where k is constant with
respect to system size however, within an electron–hole
approach, the evaluation of K1d and K1d scales as k[Nc �
Nv � Npw � ln Npw], where Nc is in general much larger than Nv.

As mentioned in the previous section, quasi-particle correc-
tions to the unoccupied states may be introduced either
through the COHSEX Hamiltonian of eqn (74) or through more
accurate quasi-particle corrections (i.e., GW corrections), as
discussed in ref. 31 and 34.

In principle, the evaluation of the statically screened
Coulomb potential W entering eqn (77) and (78) requires
summations over empty states; these are avoided by computing
the dielectric matrix as described in Section 3.1.2.

Although in general the size of the operator L in the DFPT-
based representation (see eqn (74)–(78)) is larger than in the
electron–hole representation, the full matrix does not need to
be built explicitly. Indeed iterative techniques, that require only
matrix by vector multiplications, are used to diagonalize L or
to solve the corresponding linear system in eqn (67). The
operator L can be efficiently applied to a vector by exploiting
techniques developed for ground-state calculations, such as
fast Fourier transforms used in plane-wave implementations of
ground state DFT calculations. The DFPT-based approach
described in this section was applied to the calculation of the
optical properties of molecules (an example is shown in Fig. 1)
and solids without relying on the Tamm–Dancoff approxi-
mation;94 either the non-Hermitian Lanczos algorithm devel-
oped in ref. 34 and 67, was used or diagonalization was carried
out with the algorithm of ref. 102.

3.3.3 Comparison between calculations using time depen-
dent DFT and the Bethe–Salpeter equation. TDDFT is an
alternative approach to the Bethe–Salpeter equation to compute
neutral excitations of materials. In principle TDDFT is a
formally exact theory.13 However, in practical calculations it is
necessary to approximate the exchange–correlation potential
Vxc(r,o) and, within the linear response regime, the corres-
ponding kernel Kxc(r,r0,o) � dVxc(r,o)/dr(r0,o) (see eqn (41)).
The most commonly used forms of the TDDFT kernel rely on
the adiabatic approximation.52 The latter consists in using
local, semi-local or hybrid functionals commonly adopted in
ground-state calculations, to approximate the TDDFT kernel by
discarding memory effects (o = 0). This approximation accu-
rately reproduced the excitation energies of molecules but it is
known to fail to describe excitons in extended systems.103
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In contrast, the Bethe–Salpeter equation appears to describe
more accurately the electron–hole interaction in extended
systems.29,47,89

Recently, there have been several attempts to improve the
accuracy of TDDFT for extended systems. For example the
approximate long-range kernel Kxc = �a/|q + G|2 was found
accurate for the calculation of the absorption spectra of several
solids.103,104 The final result depends on the parameter a,
which is system dependent. A more systematic way to find an
approximation of Kxc for solids relies on the comparison
between the BSE and the TDDFT equations.105 Since Kxc

depends only on two indexes (eqn (42)) and X depends on four
indexes (eqn (14)), this comparison is possible by considering a
symmetrized version of eqn (42), in its dynamical form. This
approach requires the calculation of GW quasi-particle correc-
tions and the same matrix elements involved in the solution of
the BSE equation in the electron–hole representation (eqn (69)–
(73)). In ref. 106 and 107 an xc kernel was developed by
requiring TDDFT reproduce the perturbative expansion of the
BSE in terms of the screened Coulomb interaction; at the first
order this approach is equivalent to the one of ref. 105. In
general the TDDFT kernels derived from the BSE are dynamical
ones (Kxc depends on o) and include the correct long-range
limit 1/|q + G|2. Many of the absorption spectra of solids
computed by BSE-based kernels are in excellent agreement

with experimental spectra; the computational cost of this
method is comparable to that of solving the full BSE.

Recently, Sharma et al.108 proposed a new approximation for
Kxc, that gives accurate results for the optical properties of
solids within TDDFT. This kernel, called bootstrap kernel, takes
the form

Kxc
bootðq;oÞ ¼

E�1ðq;o ¼ 0Þ
w000 ðq;o ¼ 0Þ

; (81)

where w00
0 indicates the G = G0 = 0 component of the inde-

pendent-particle polarizability in eqn (49), while E�1is the static
inverse dielectric matrix. The bootstrap kernel (eqn (81))
is designed to reproduce the correct asymptotic behavior
1/|q + G|2 necessary to describe the optical spectra of extended
systems. Since the kernel itself depends on E�1, the numerical
solution of the TDDFT equations must be performed self-
consistently. At the first iteration Kxc is set to 0, eqn (42)
(in its dynamical form) is solved to determine w, which is then
used to compute the inverse dielectric matrix E�1 through
eqn (22); by inserting E�1 in eqn (81), one can compute a new
approximation for Kxc and the procedure is repeated until self-
consistency is achieved. Since local or semi-local functionals
are known to underestimate electronic gaps, the independent-
electron polarizability w0 used in the bootstrap kernel is
approximated starting from GW or LDA + U109–111 calculations.
The bootstrap kernel was applied to different systems including
small to medium band gap bulk semiconductors and materials
with strongly bound excitons, such as LiF and noble gas
solids;108 for the cases considered so far a good agreement
with experiments was found.

We now turn to the application of the many body techniques
described in Sections 2 and 3 to the calculations of electronic
excitations in materials used as photocathodes and photoanodes
in photoelectrochemical cells.

4 Band edge and absorption spectra
calculations of semiconductor photoelectrodes

In this section we first briefly recall the basic steps involved in
photoelectrochemical (PEC) energy conversion and we intro-
duce the excitation processes of interest; we then focus on
specific materials. In each case we will point out the effects on
the final results, of the numerical approximations described in
Section 3. The main goal of this section is to illustrate what can
be computed at present using MBPT, which physical properties
can be predicted and how calculations may contribute to
interpret specific measurements of interest for PEC cells.

The photoelectrochemical path to water splitting involves
separating the oxidation and reduction processes into half
reactions. Photoelectrolysis, or semiconductor-based PEC water
splitting, can be accomplished by following two main strategies:2,112

one uses photovoltaic (PV) modules connected directly to
electrolyzers and/or catalytic electrodes; another one uses semi-
conductor–liquid junctions, where water splitting occurs at the
semiconductor surface. The latter has several advantages over

Fig. 1 Absorption spectra of a 1 nm hydrogenated Si cluster (Si35H36) as
obtained by using many body perturbation theory and the techniques to solve
the Bethe–Salpeter equation (BSE) described in Section 3.3.2.2 and in ref. 34.
Results without (full BSE) and with the Tamm–Damcoff approximation (TDA)
are presented in the upper panel. The lower panel compares the full BSE results
with time dependent DFT results obtained using the LDA approximation
(TDLDA).
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the former approach, e.g. it avoids significant fabrication and
systems costs involved in the use of separate electrolyzers wired
to p–n junction solar cells;113 in addition it is relatively
straightforward to create an electric field at a semiconductor–
liquid junction.114 One promising photoelectrolysis cell is
based on two semiconductor–liquid junctions: a n-type semi-
conductor is used for the evolution of O2 (photoanode) and a
p-type one for the evolution of H2 (photocathode). In this way
two semiconductors with band gaps smaller than those used in
wired cells can be utilized, and each one needs only to provide
part of the water splitting potential. A smaller band gap implies
an increased absorption in the visible region of the solar
spectrum, where the sun has a greater photon flux, and thus
a higher maximum theoretical efficiency.112

The desirable properties of water-splitting photoanode
and/or photocathode materials are the following:115 (i) Efficient
absorption of visible light. The minimum required band gap is
determined by the energy necessary to split water (1.23 eV) plus
the thermodynamic losses116 (0.3–0.4 eV) and the overpotential
necessary to ensure sufficiently fast reaction kinetics117,118

(0.4–0.6 eV). As a result, the optimum value of the band gap
should be equal to or larger than B1.9 eV and smaller than
3.1 eV, so as to fall within the visible range of the solar
spectrum. (ii) High chemical stability in the dark and under
illumination. Metal oxide semiconductors are more stable than
most non-oxide semiconductors and in this respect they appear
to be promising materials. (iii) Band edge positions that
straddle the water reduction and oxidation potentials. The
band edges of non-oxide semiconductors tend to be better
suited to reduce water and produce H2, whereas those of oxide
semiconductors are often more appropriate for water oxidation
and the production of O2. We recall that for an efficient
reaction, the conduction band minimum (CBM) of the photo-
cathode must be higher than the water reduction potential
H+/H2O, and the valence band maximum (VBM) of the photo-
anode lower (more positive in potential) than the water oxida-
tion potential O2/H2O. (iv) Efficient charge transport: efficiency
is determined by intrinsic factors such as mobilities and
extrinsic factors such as defects that may act as recombination
centers.115 So far no single material has been found that meets
all requirements listed above.

Here we focus on the description of optical absorption and
photoemission processes and hence on requirements (i) and
(iii). Section 4.1 discusses band edges and 4.2 absorption
spectra.

4.1 First principles calculation of band edges

Water reduction and oxidation reactions occur at the interface
with a photoelectrode, hence surface band edges determine the
alignment of the photoelectrode energy levels with the water
redox potential. Several procedures were proposed in the
literature to determine band alignments at water/photoelectrode
interfaces;119–121 for example the authors of ref. 120 computed
the alignments between the CBM of TiO2 and the water
reduction potential by computing the free energy change in
proton-coupled redox reactions occurring at the interface, from

ab initio molecular dynamics. They also determined the shift of
the TiO2 band edges and found results in agreement with
experimental Volta potential shift.121 However, all water/photo-
electrode interface calculations appeared so far were carried
out at the local or semi-local DFT level and no MBPT calcula-
tion was yet reported. In general, due to the complexity of
surface and interface structures, many studies of band edge
alignments with the water redox potential are based on bulk
systems (for example see Fig. 2, from ref. 122).

Within this framework one determines the absolute posi-
tions of the VBM and CBM energies of the photoelectrode and
the absolute positions of the O2/H2O oxidation and H+/H2O
reduction potential relative to the vacuum level EVacuum. The
measured O2/H2O oxidation and H+/H2O reduction potentials
are 1.23 eV and 0 eV, respectively, relative to the normal
hydrogen electrode (ENHE) at pH = 0 and their corresponding
values relative to vacuum are �ENHE �4.44 eV = EVacuum, as
recommended by the International Union of Pure and Applied
Chemistry.126,127 Experimentally the value of the CBM and VBM
of a photoelectrode relative to vacuum can be measured by PES
(photoemission spectroscopy)-IPES (inverse photoemission
spectroscopy). Computationally the determination of the CBM
and VBM for a homogeneous solid is relatively straightforward,
following two separate steps: first one determines the differ-
ence between the VBM and CBM energies (quasiparticle band
gap) using a supercell calculation for a periodic system; then
the difference between the average potential in the bulk of the
solid and in a slab (composed of a portion of the bulk plus
vacuum) is used to refer the computed energies to the vacuum
level. An alternative procedure was proposed in ref. 128, where
one determines the band gap center (BGC) relative to the
vacuum first, then obtain the VBM (CBM) energy from the
BGC minus(plus) one half of the band gap.128 The calculations
of the VBM and CBM energies are more complex in the case of
surfaces, as a determination of the surface structure needs to be

Fig. 2 The water redox potentials F(O2/H2O) and F(H+/H2) (dashed lines) and
the valence (green columns) and conduction (blue columns) band edge positions
at pH = 0 of several semiconductors. The valence and conduction band edges are
collected from ref. 123 for most metal oxides, from ref. 124 for most non-oxides,
and from ref. 125 for Ta2O5, Ta3N5, and TaON. Calculated oxidation potential Fox

(red bars) and reduction potential Fre (black bars) relative to the NHE and
vacuum level for a series of semiconductors in solution at pH = 0, the ambient
temperature 298.15 K, and pressure 1 bar are also plotted. Reprinted with
permission from ref. 122. Copyright 2012 American Chemical Society.
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carried out which, depending on the surface morphology, may
require the use of large supercells.

In the following, we discuss the computation of quasi-
particle gaps and band alignment for representative bulk
materials (Section 4.1.1) and surfaces (Section 4.1.2). We focus
on TiO2 and WO3 as promising photoanode materials and on
silicon with functionalized surfaces as a promising photo-
cathode material. We recall that TiO2 has been extensively used
as a photoanode material,129–133 since the pioneering experi-
ments of Fujishima and Honda.134 Tungsten trioxide (WO3) has
also been considered as a good photoanode material in the
study of PEC water-splitting systems because it has sufficient
absorption within the solar spectrum to generate modest
photocurrents, good electron transport properties, and stability
against photocorrosion.135

With a band gap of 1.12 eV, p-type Si (p-Si) is a desirable
small band gap absorber for use as photocathode in dual band
gap p/n-PEC water splitting configurations.136 Several groups
demonstrated that a p-Si photocathode, combined with metal
catalysts, can be used to produce H2 electrochemically with
a reduced voltage.137,138 For example, photon to hydrogen
conversion efficiencies as high as 6% was reported for p-Si
decorated with Pt nanoparticles.138 Other Earth abundant
metal catalysts such as Ni or Ni–Mo can be alternatives to Pt139

to provide similar photoelectrode efficiencies when deposited
onto Si microwire arrays. BiPt alloys140 were also shown to
have improved catalytic activity to hydrogen evolution reaction
performance, compared with pure Pt.

4.1.1 Calculations of band edges of bulk materials. Here
we illustrate state of the art calculations for the band edges of bulk
materials and we discuss in particular the case of TiO2 and WO3.

The quasiparticle gap of rutile TiO2 was measured using
different spectroscopies: XPS-BIS (X-ray photoelectron and
bremsstrahlung isochromate spectroscopy) experiments
reported a value of 3.3 
 0.5 eV141 while UPS-IPS (ultraviolet
photoemission spectroscopy and inverse photoemission
spectroscopy measurements) yielded 3.6 
 0.2 eV142 (data are
not available for anatase). The difference between XPS-BIS and

UPS-IPS data may be representative of the difference between
bulk and surface fundamental gaps, as the former spectroscopy
is expected to probe the bulk region, and the latter surface
layers.143 Both gaps are obtained from a linear extrapolation of
the leading edges of the integrated photoemission spectra,
which do not allow one to discern between surface and bulk
states. Computed values of the TiO2 quasiparticle gap are
shown in Table 6. Overall the agreement between GW calcula-
tions (see Section 2.6) and measured values is good, with
computational results varying within 3.4–3.8 eV.

Differences between the various calculations stem from
several factors, encompassing the basis sets chosen, the way
summation over empty states are carried out and the calcula-
tion of (or model for ) the frequency dependence of the
dielectric matrix (see Section 2.7). Ref. 144 pointed out that
the use of a plasmon-pole model for the frequency dependence
of dielectric matrices21,145 results in a significant overestimate
of the quasiparticle gap of TiO2. Therefore, the use of different
procedures to compute the matrix elements of dielectric
matrices as a function of frequency could be partially respon-
sible for the different GW results obtained in ref. 144 and 146.
We note that variations of G0W0 quasiparticle gaps depending
on the chosen ground state wavefunctions and eigenvalues –
e.g. from LDA/PBE, PBE + U or screened hybrid functionals
(HSE06)147 ground state calculations – are non-negligible,
ranging from 0.3–0.6 eV (see Table 6). Self-consistent GW
calculations for rutile TiO2,

80 which in principle eliminate the
dependence on the ground state eigenvalues and eigenfunctions,
give a band gap of 3.78 eV, larger than all the results obtained at
the G0W0 level of theory.80,144,146,148,149

Results for the electronic properties of WO3 are not as
abundant as for TiO2. Recently157 we computed the band gaps
of WO3 at several levels of theory: LDA, modified DSCF12 and
G0W0.

157 All calculations were carried out at the experimental
geometry, given the lack of consensus in geometrical para-
meters found using, e.g. LDA, PBE, or Van der Waals density
functionals.158 As shown in Table 7, the computed G0W0

quasiparticle gap is 3.26 eV for RT-monoclinic WO3, in

Table 6 Calculated electronic band gaps (eV) of rutile and anatase (TiO2) using different levels of theory, specified in the first column (acronyms defined in the text).
Most GW results are at G0W0 level; the rutile direct gap (3.78 eV) was obtained80 with self consistent GW calculations

Theory Rutile EDirect
gap Rutile EIndirect

gap Anatase EDirect
gap Anatase EIndirect

gap

LDA 1.75144 2.44144 2.01144

PBE 1.88,149–151 1.77,152 1.93,146 1.82148 2.36,150,151 2.43146 2.05,150,151 2.15,146 1.94,149 2.08148

PBE + U 2.83148 3.27148

HSE06 3.05,152 3.39149 3.60149

GW 3.38,144 3.78,80 3.59,146 3.40,148 3.46149 3.34144 4.14,144 4.29146 3.79,153 3.56,144 3.83,146 3.70,148 3.73149

GWU 2.85148 3.27148

HSE06-GW 3.73149 4.05149

Exp(PES-IPES) 3.3, 3.6141,142

Ref. 144: experimental geometry; LDA-KS eigenvalues and wavefunctions; norm-conserving pseudopotentials; full frequency dependent dielectric
matrix; energy cutoff (Ecut) = 60 (20) Ry for Sx (Sc); 160 bands included in the calculation of S. Ref. 146: geometry optimized at the PBE level; PBE-KS
eigenvalues and wavefunctions; plasmon-pole approximation for the frequency dependent e. Ref. 153: geometry optimized at the PBE level; PBE-KS
eigenvalues and wavefunctions; norm-conserving pseudopotentials; Ecut = 36 (30)Ry for Sx (Sc); 100 bands included in the calculation of e and S.
Ref. 148: experimental geometry; PBE-KS eigenvalues and wavefunctions; Godby–Needs plasmon-pole model51 for the frequency dependent e; Ecut =
80 (10) Ry for Sx (Sc); 568 unoccupied bands included for e and S; U = 7.5 eV in GWU calculations. Ref. 149: PBE and HSE06 KS eigenvalues and
wavefunctions; projector-augmented wave pseudopotentials;154,155 full frequency dependent dielectric matrix.156 Ref. 80: LDA-KS eigenvalues and
wavefunctions; GW calculations are self-consistent.
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apparent good agreement with the results of UPS-IPES mea-
surements (3.38 
 0.2159 and 3.28 
 0.14127).

However including relativistic effects (spin-orbit coupling)
in our band structure calculations brings the G0W0 gap to a
value of B3.1 eV; this value is further decreased by B0.2–0.3 eV
once electron phonon interaction is taken into account by
using a model Frölich Hamiltonian (see the value GW w/SO/
e-ph in Table 7). Therefore our computed quasiparticle gaps
appear to underestimate the measurements of ref. 127 and 159.
We note that UV photoemission (UPS) experiments were
performed using He I (21 eV) and He II (41 eV) excitations,
which have great surface sensitivity and hence the measured
gap is the gap of the surface, while our calculations were carried
out for the bulk. Higher photo energies (e.g. hard X-ray
measurements143) are required to study the bulk properties of
materials and avoid surface effects. Ref. 127 noted that an
increased band gap at the surface of a polycrystalline semi-
conductor with respect to the bulk is not unusual. For example,
the observed electronic surface band gap of CuInSe2 films
(1.4 eV)167 is significantly larger than the corresponding optical
bulk band gap (1.0 eV). Both structural as well as compositional
differences between bulk and surface could be responsible for
the observed enhancement of the surface band gap. Further
studies are necessary to clarify the difference between surface
and bulk WO3 quasiparticle gaps.

To compare with optical measurements, we157 computed the
exciton binding energy by calculating the difference between
the first excitation energy of optical spectra (obtained by solving
the BSE) and the G0W0 gap; we found a value of 0.15 eV,
bringing our computed optical gap, 2.7–2.8 eV (see entry before
the last in Table 7), in agreement with the experimental value
extrapolated from 300 K to 0 K (2.8–2.9 eV).166

Systematic studies of the band gap of family of oxides within
MBPT are rare; a recent one168 considered the family of
(A2B0BO6) V5+and Cr6+double perovskites. Different levels of
theory were used, including LDA, HSE06 and G0W0@LDA
(i.e. G0W0 using KS eigenvalues and eigenfunctions computed
at the LDA level). The authors found that the G0W0@LDA
results overestimate the optical gaps by an average of 0.92 eV.
The overestimate is not surprising, as the electron–hole
interaction is not included in the GW approximation; however,
in these materials the exciton binding energies are expected to
be of the order of 0.1–0.2 eV; thus their inclusion in the
calculation is not expected to yield computed optical gaps in
agreement with experiments. Therefore in ref. 168 a semi-
empirical method was used to rationalize trends in computed
gaps. The authors exploited the linear dependence of the
electronic part of the static dielectric constants (E1)169 and
the difference between the band edge Fock exchange energies
(Dx) in d0 perovskite compounds; then they defined a semi-
empirical correction to computed values by fitting the LDA gap
errors as a function of E1 and Dx. This semi-empirical approach
successfully predicted the optical gaps of several perovskite
oxides, spanning the visible region of the solar spectrum.

As mentioned at the beginning of this section, once quasi-
particle gaps are computed, one needs to obtain absolute
positions of the VBM and CBM with respect to vacuum in
order to align band edges with water redox potentials. To
define the absolute zero (vacuum level) of the electrostatic
potential, a common practice is to construct a periodic
cell containing a slab sufficiently thick to mimic the bulk
of the material, and inclusive of a vacuum region large
enough to avoid the interaction with neighboring replica. One
then computes the average electrostatic potential in the
bulk region ( %Vbulk-region) of the slab relative to the vacuum
region (Vvacuum). The value of %Vbulk-region is usually very
similar to that of the bulk materials ( %Vbulk)170 as obtained
with periodic bulk calculations. Therefore the VBM (CBM) of
the bulk material can be computed relative to %Vbulk first and
then the difference (D %Vbulk-vac = %Vbulk-region � Vvacuum) is added
in order to obtain the VBM (CBM) relative to the vacuum level.
In most cases appeared in the literature, the calculation
of average potentials was carried out at the LDA or PBE level
of theory.

However, the VBM (CBM) obtained by local or semi-local
DFT calculations may be inaccurate and in particular suffer
from self-interaction errors. In order to solve this problem,
GW corrections (dEQP

VBM/CBM) to VBM/CBM energies obtained at
the KS level were sometimes used.128,144,171 The equation to
compute VBM/CBM relative to vacuum at the GW level can then
be written as follows:

EQP
VBM/CBM = D %Vbulk-vac � %Vbulk + ELDA

VBM/CBM +dEQP
VBM/CBM (82)

The band edge positions relative to vacuum are schematically
shown in Fig. 3, where we also indicated a possible alignment
with water redox potentials. We emphasize again that the band
positions with respect to water redox potential depend not only

Table 7 Electronic band gap (eV) of monoclinic WO3 computed using different
levels of theory (acronyms are defined in the text). Eopt

g denotes the optical gap.
The last column indicates whether the gap is direct (D), indirect (I) or pseudo-
direct (PD). The values of I and D gaps differ by less than B0.05 eV. From ref. 157

Theory Band gaps [eV] Type

LDA 1.87,c 1.31160 D, PD
PW91 0.90,161 1.19162 b D

1.36,162 b 1.57162 b

RPBE 1.73163 ID
B3LYP 3.13162 D
HSE06 2.80162 D
PBE0 3.94,c 3.67162 D
DSCF 2.92c —
G0W0 3.26c D
G0W0(w/SOa) 3.16c D
G0W0(w/SO/e-pha) 2.86c–2.96c D
Exp(UPS-IPES) 3.38 
 0.2,159 3.28 
 0.14127 —
Eopt

g 2.71c–2.81c D
Eopt

g (exp)164–166 2.6–2.7(300 K), 2.8–2.9(0 K) ID, D

a SO: spin orbit; e-ph: electron phonon. b Ref. 162 (PW91): 1.19 eV
computed by ultrasoft pseudopotentials; 1.36 eV computed by PAW
pseudopotentials; 1.57 eV computed by Gaussian-type basis sets with a
linear combination of atomic orbitals approach. c In ref. 157 all band
gaps were computed at the experimental geometry; the other calcula-
tions shown in the table were carried out at the optimized geometries of
the corresponding functionals.
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on the bulk properties but also on the hydration layer at the
interface and on the specific chemical interactions leading to
proton–electron transfers at the interface.

First principle calculations of band alignment between
VBM/CBM of photoelectrodes and water redox potentials are
not abundant, especially at a level of theory higher than local or
semilocal DFT.119,121,124 In the following, we briefly summarize
some examples of band edge calculations at the GW level of
theory. The authors of ref. 144 used eqn (82) to compute the
TiO2 rutile VBM alignment with the vacuum level, obtaining
7.8 eV, which compares well with the experimental values172,173

of 8.0–8.2 eV. The authors of ref. 128 computed instead the BGC
first, following the theorem by Perdew and Levy174 stating that
the exact Kohn–Sham band structure predicts exactly the center
of the fundamental energy gap relative to the vacuum level.
However, in ref. 128 BGC was computed by approximate
KS band structure calculations (PBE+U and LDA+U for FeO); a
slab model (BGCslab), referenced to the electrostatic potential in
the vacuum region was adopted and the band gaps were
obtained for the bulk system (Egbulk) using the GW approxi-
mation. Finally the VBM and CBM energies relative to
vacuum were obtained from (BGCslab � 1/2Egbulk) and
(BGCslab + 1/2Egbulk) respectively. This approach was applied to
several TMOs, for which the BGCslab was found to be insensitive
to the parameters used in the (DFT+U) calculations and to the
chosen exchange correlation functional (e.g. HSE06 or PBE0).128

The difference between experimental and calculated values of
the VBM of several TMOs (MnO, FeO, Fe2O3, NiO, Cu2O)
computed at the (DFT+U) optimized geometries varied between
0.1 and 0.9 eV.128

A slightly different approach was proposed to compute the
GW corrections of the bulk KS-VBM energies (dEQP

bulk) in ref. 171:
(EQP

VBM = dEQP
VBM,bulk + EKS

VBM,slab � Vslab-vac); this approach impli-
citly assumes that the GW corrections for the bulk KS-VBM
(dEQP

VBM,bulk) are similar to the ones for the slab (dEQP
VBM,slab). The

method171 was applied to the computation of VBM and CBM of
molybdenum and tungsten dichalcogenides MX2 (M = Mo and
W; X = S and Se) which are considered to be promising
photocathode materials. The authors of ref. 171 found errors
of 0.1–0.2 eV, compared with experimental values.

We now turn to the calculations of surface band edges with a
specific focus on silicon and protected silicon surfaces.

4.1.2 Calculations of band edge of surfaces. Many semi-
conductor surfaces are not stable in air or water and they
readily oxidize. As a consequence, their properties as photo-
electrode materials may be greatly degraded. Therefore wide-
spread efforts were devoted to protect semiconductor surfaces
from oxidation, especially in the case of silicon. For example, it
was found that methyl-terminated silicon surfaces136,175,176

with close to complete coverage can effectively inhibit oxida-
tion. Unfortunately methyl termination is also an effective
barrier towards further useful chemistry, e.g. to covalently
attach catalysts for hydrogen production. Lewis’ group pio-
neered research into using mixed surface functionality177,178

to balance the two goals of stability and reactivity to useful
chemistry. Another important effect of surface functionaliza-
tion is to modify the photoelectrochemical device energetics136

through covalent chemical modifications, so as to eliminate the
pH dependence of the band edge position of the solid,136 while
allowing for pH control of the electrochemical potentials of the
H+–H2 and O2–H2O systems.179 In this way, one can effectively
manipulate the relative position of the band edges of the solid
and the H2O redox potentials.

Several ab initio studies of the electronic structure of func-
tionalized Si surfaces were published recently180–182 at the
semi-local DFT level of theory, and only few using the GW
approximation.183,184 The authors of ref. 183 studied the
electronic and spectroscopic properties (STM and STS) of the
hydrogen terminated Si(111)-(1 � 1) surface using both LDA
and GW calculations, and some of their results are shown in
Table 8. The table reports the results of G0W0(GW0) calculations
for both the energy positions of surface states and the electro-
nic gap; a comparison is also given with experiments and other
studies.185 Note the differences of 0.3–0.5 eV from previous
calculations (e.g. ref. 185), which may stem from the use of a
specific plasmon-pole model (PPM) approximation21 in
ref. 185, instead of direct frequency integration as done in
ref. 183 (see Section 3.1.1). The explicit frequency dependence
employed in the direct integration, although more accurate
than the PPM, yields valence-band width and surface states in
worse agreement with experiments. This discrepancy could be
due, at least in part, to inaccuracies of the non self-consistent
G0W0 treatment of the electronic structure.

Interestingly, as shown in Fig. 4, self-energy corrections
lead to a downward shift of surface states (red solid lines)
relative to the VBM, with respect to their corresponding
positions found at the LDA level; on the other hand, the
energy position of surface resonance states (dashed blue lines
in Fig. 4) relative to the VBM as obtained within LDA is almost
unaffected by self-energy corrections because of their bulk-like
nature.

As mentioned previously, the methyl-termination of Si(111)
surfaces constitutes a promising protection from oxidation.
Ref. 193 studied the structural and electronic properties of
the methyl-terminated Si(111) surface, which were found to
be very similar to those of the hydrogen-terminated Si(111).

Fig. 3 Schematic computation of band edges with quasiparticle correction
relative to vacuum and water redox potential (see text).
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For example, no states in the gap are induced by the presence of
the adsorbate; VBM and CBM states remain bulk-like. More
complex than the hydrogen-terminated Si(111) surface, the
description of the methyl-terminated one requires the inclusion
of van der Waals (vdW) dispersion forces between the methyl
groups, which were taken into account by the DFT + D
approach194 in ref. 193.

As to more complex functionalizations, a study was recently
reported in ref. 184. By comparing H-, CH3-, C2H5-, Cl- and
Br-terminated Si(111) surfaces, the authors of ref. 184 found that
GW calculations are required to accurately compute the absolute
positions of the valence band edges with different surface termi-
nations; however the relative shifts of band edges between
different surface terminations may be well described at the
DFT–LDA level, with results in good agreement with experiment,
as shown in Table 9. Interestingly, ref. 184 also found that the sign
and magnitude of surface dipole moments of different surface
terminations follow a trend that may be explained by simple
electronegativity rules. Such a trend may be useful to understand
other surfaces and predict the relative band edge shift and surface
dipole with additional surface terminations. Similar concepts
were discussed in ref. 195, where it was shown that by changing
the size and orientation of the ligand’s intrinsic dipole moment
via functionalization, one can control the direction and magni-
tude of the shifts of the electronic level of another material, CdSe,
and thus the band alignment with water redox potentials.

4.2 Absorption spectra of semiconductor photoelectrodes

Similar to the previous section, we separate our discussion into
bulk systems (4.2.1) and surfaces (4.2.2). We close this section
with a discussion of absorption spectra of nanostructures (4.2.3).

4.2.1 Absorption spectra of bulk systems. We now turn to
calculations of optical spectra and again we consider TiO2, WO3

and silicon as representative examples.

Table 9 Band gaps (Eg) and ionization potentials (IPs) of H–, CH3–, C2H5–, Cl–, and Br-terminated Si(111) surfaces, and relative IP with respect to that of H–Si(111)
(DIPR:H) (all energies are in eV). Reprinted from ref. 184

R–

LDA G0W0 Exp.
Eg

a IP [DIPR:H] Eg IP [DIPR:H] IP [DIPR:H]

H– 0.73 4.83 [�0] 1.53 5.46 [�0] 5.29,b 5.31c

CH3– 0.70 4.06 [�0.8] 1.50 4.71 [�0.8] 4.80b [�0.5], 4.76c [�0.6], [�0.7],d [�0.6]e

C2H5–f 0.72 3.83 [�1.0] 1.53 4.52 [�0.9] 4.94b [�0.4], 4.79c [�0.7], [�0.7],d [�0.7]e

Cl– 0.65 5.89 [1.1] 1.46 6.56 [1.1] [1.2–1.5],g [0.7]d

Br– 0.62 5.59 [0.8] 1.44 6.27 [0.8] [0.5]d

a Eg was evaluated between �G = {0,0,0} and %M = {1/2,0,0}. b Ref. 189 and 190, high-resolution synchrotron photoelectron spectroscopy
measurements. c Ref. 191, estimated from barrier heights of Hg–Si junctions using forward bias J–u data as: IP = WHg

f � qFb,J–V + Eg, where W
Hg
f = 4.49 eV is the work function of Hg and Eg is assumed to be 1.12 eV. d Ref. 184, determined from UPS measurements of the work function shift
and estimated band bending. e Ref. 184, similar to ref. 191 but using Cdiff–V data. f Surface coverage of the C2H5–Si(111) surface was estimated to
be 0.6 in ref. 184 and 65–95% in ref. 190, while a full coverage was assume in ref. 184. g Ref. 192, Kelvin probe measurements.

Table 8 Quasiparticle energies computed at the G0W0(GW0) level of theory for a 12-layer H–Si(111) slab. We report the valence-band width (EW), the band gap
between �G and %M (E

�G� %M
g ), and energies of surface states at %K and %M relative to the VBM. Frequency integration was performed with the contour deformation method

(ref. 186), full frequency integration (No PPM) or by using plasmon-pole models proposed by Godby and Needs [ref. 51(GN)] and by Hybertsen and Louie [ref. 21(HL)].
All energies are in eV. Reprinted with permission from ref. 183. Copyright 2010 by the American Physical Society

No PPM GN HL HLa HL (ref. 185) Expt. (ref. 187 and 188)

EW 11.6 (11.7) 11.3 (11.3) 11.8 (12.0) 11.9 (12.1) 12.5 
 0.6
E

�G� %M
g 1.46 (1.53) 1.45 (1.54) 1.48 (1.57) 1.32 (1.41) 1.32
%K �3.49 (�3.54) �3.52 (�3.57) �3.62 (�3.69) �3.68 (�3.75) �3.82 �3.80

�4.37 (�4.44) �4.43 (�4.49) �4.49 (�4.57) �4.62 (�4.68) �4.76 �4.78
�7.96 (�8.03) �8.04 (�8.10) �8.28 (�8.44) �8.38 (�8.52) �8.47 �8.64

%M �4.13 (�4.19) �4.18 (�4.24) �4.30 (�4.38) �4.38 (�4.46) �4.63 �4.76

a Parameters used for GW calculations were extracted from ref. 185, with 350 empty states and energy cutoffs of 11.6 Ry, 7.8 Ry and 4.4 Ry for e, bare
exchange, and dynamical part of S, respectively.

Fig. 4 Energy levels of surface states of the hydrogen terminated Si(111)-(1 � 1)
surface at %K and %M (red solid line) and the surface resonance state at �G (blue
dashed line) relative to the valence-band maximum, as predicted by three
different levels of theory: LDA, G0W0, and GW0. Energy positions of measured
surface states are shown as thick horizontal bars with thickness equal to the
width (B0.3 eV) of experimental photoemission spectra. Reprinted with permis-
sion from ref. 183. Copyright 2010 by the American Physical Society.
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Optical properties of TiO2 (rutile and anatase) were studied
from first principles in several papers.144,146,149,196 Ref. 144 and
146 compared TiO2 rutile (anatase) BSE absorption spectra with
experimental reflectivity measurements over an energy range of
2–12 eV (2–25 eV).197,198 Computed BSE absorption spectra well
reproduced the main absorption onset found experimentally
near 4 eV and the intensity up to 6 eV of both rutile and anatase
(see Fig. 5). However, several questions remain open: (i) The
experimental fundamental optical gap of rutile is 3.03 eV while
the UPS-IPES yields an electronic gap of 3.3–3.6 eV. The
difference between the two measurements can not be explained
by the first exciton binding energy199 which is only 4 meV for
rutile, as from measurements of low temperature absorption
spectra.199 (ii) The calculated first exciton binding energy is
0.13 eV144 for rutile, which is two orders of magnitude larger
than the experimental one and the calculated lowest excitation
energy position exceeds the measured one by 0.22 eV. (iii) The
systematic overestimate of the oscillator strength of the BSE
spectra compared with TiO2 experimental spectra in the high
energy range (above 8 eV) is not understood. Ref. 144 suggested
that the discrepancy between experimental and theoretical
exciton binding energies as well as the lowest excitation

energy position could be due to electron phonon interaction,
which was not included in the GW-BSE calculations; the over-
estimation of oscillator strength at higher energy might
be due to the use of the Tamm–Dancoff approximation (see
Section 3.3.2) and the assumption of statically screened
Coulomb interactions.

Calculations of optical properties of WO3 were reported only
for the simple cubic structure. The structure of room tempera-
ture (RT) monoclinic WO3 differs from that of simple cubic only
by the location of the W atoms, that are off the octahedra
centers and the tilt angles between octahedra deviate from 1801
by 151–251 in the RT-monoclinic phase. As a result, the electro-
nic structure of simple cubic and monoclinic WO3 are similar:
the top of the valence band consists of the O 2p states and the
bottom of the conduction band is composed of W 5d states
(slightly hybridized with O 2p states). The transitions between
O 2p states and W 5d states are allowed.

Most experimental absorption spectra of WO3
165,200,201 are

measured by UV-vis spectrophotometers, over a narrow energy
range nearby the fundamental absorption edge, and they are
likely to be very sensitive to optical transitions with small
intensity. Instead, measurements of reflectivity (e.g. with
synchrotron radiation or by using ellipsometry) over a large
energy range far from the absorption edge are less sensitive to
the details of the edge, e.g. phonon assisted transitions. As
computed BSE spectra of WO3 do not include any phonon
assisted transitions and electron phonon interaction was not
included, it is meaningful to compare the computed GW-BSE
calculations with the experimental ellipsometry spectrum.
However, the experimental results for pure single crystal WO3

are very limited202 and rather uncertain: the authors of ref. 202
who measured pure WO3 and sodium bronze’s reflectivity by
ellipsometry noted that their WO3 samples may not behave
as single crystals from an optical standpoint; ellipsometric
measurements are probably influenced by contributions from
domains with different crystallographic orientations, giving
rise to an artificial double peak in the absorption spectra along
one of the axes. To the best of our knowledge, no other
reflectivity or absorption measurements of WO3 over a wide
energy range is available. Therefore in ref. 157 we compared the
computed WO3 BSE spectrum with that of sodium bronze
(Na0.65WO3), which has a band structure similar to that of
simple cubic WO3: the extra electrons from Na fill the conduc-
tion bands of simple cubic WO3

203 without modifying the
original band structure. As a consequence the WO3 spectrum
is similar to that of NaxWO3(x = 0.4–1), except for a free-electron
contribution at lower energies (about 2 eV below the onset of
interband transitions). Fig. 6 shows the comparison between
the spectrum of WO3 computed by the BSE and the experi-
mental sodium bronze (Na0.65WO3) one measured by reflectivity.
The overall shape of the computed BSE spectrum is in good
agreement with experiment.

Although WO3 is a good photoanode material for oxidizing
water, it is not an efficient absorber of sunlight because its large
band gap falls on the ultraviolet-and-blue tail of the solar
spectrum. Extensive work was done to reduce the band gap of

Fig. 5 The imaginary part of the frequency dependent dielectric function e2(o)
of rutile from 0 to 12 eV. Solid curves are theoretical calculations with the BSE,
and dashed curves are experimental results obtained at room temperature. In
(a) the direction of polarization is perpendicular to the tetragonal axis c, and in
(b) the direction of polarization is parallel to axis c (from ref. 144). Reprinted with
permission from ref. 144. Copyright 2010 by the American Physical Society.
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WO3 in order to optimize the visible light absorption, for
example by atomic substitutions e.g. nitrogen (N).200 However,
the high concentration of substituted N required for a signifi-
cant decrease of the band gap gives rise to charged defects and
increases carrier recombination rates, thus leading to a poor
photocurrent density. Recent work by ref. 158 and 205 showed
that molecular clathrates e.g. monoclinic WO3 intercalated with
nitrogen molecules can decrease its band gap up to 0.8 eV
without introducing charged defects. The computed GW-BSE
absorption spectrum of N2 intercalated WO3

157 (or N2@WO3)
shows two main features: the absorption edge is red shifted
compared with that of pure WO3, consistent with the experi-
mental observation; the oscillator strength of the first two
peaks is redistributed to higher energy. This indicates that
the N2 presence increases the screening of the electron hole
interaction and hence it decreases the exciton binding between
electron and hole pairs. Indeed, the calculated lowest exciton
binding energy decreased by 0.05 eV upon N2 intercalation. The
redistribution of the oscillator strength to higher energy is not
ideal for solar applications; however, the presence of N2 is
mostly beneficial as the light absorption within the visible
spectrum is enhanced by the presence of the molecule.

As in the previous section, after discussing the oxides, we
turn to silicon. Optical properties of bulk silicon were exten-
sively studied theoretically. Good agreement with experimental
results was obtained using GW-BSE approaches.29,30,91 In
particular, ref. 31 computed the absorption spectrum of bulk
silicon by solving the BSE without explicitly including empty
states, and using the approach described in Section 3.3 (see
Fig. 7). The computed spectrum exhibits accurate position and
intensity of the two main peaks, compared to experiments, with
an error of at most 0.12 eV for the first (E1) transition. However,
the computed spectrum also shows a weak additional peak
between the two main transitions that has a strong dependence

on the k-point mesh used in the calculation. This extra peak
was also found in some of the earlier BSE calculations and in
other recent publications.91 We note that even though the well
accepted value of bulk silicon exciton binding energy is only
14.7 
 0.4 meV,206 excitonic effects significantly modify the
shape of the absorption spectra. For example TDLDA calcula-
tions (which do not contain any excitonic effect) yield an
absorption threshold much lower than found both experimen-
tally and using the BSE; in addition, the TDLDA spectrum
exhibits a shoulder instead of a main peak.

The BSE and TDLDA spectra shown in Fig. 7 only involve
direct optical transitions. The optical transitions between the
indirect (1.1 eV) and direct band gap (3.4 eV207) of Si, which
capture the main part of visible light absorption is not included
in Fig. 7. Recently, ref. 208 studied the phonon-assisted inter-
band optical absorption spectrum of bulk silicon at the quasi-
particle level of theory. The calculated spectra near the onset of
the indirect absorption are in good agreement with experi-
mental measurements for a range of temperatures, as shown
in Fig. 8. We note that the theoretical absorption spectra of
Fig. 8 were rigidly shifted downward in energy by 0.15–0.23 eV
in order to match the onset of the experimental curves. The
need for such a shift may arise from finite-temperature effects
that were not explicitly considered in the GW calculations of
ref. 208. Moreover, the sharp features that appear near the
onset of the experimental absorption spectrum were attributed
to excitonic effects, which were not taken into account in the
calculations. As noted in ref. 208, the modification of absorp-
tion spectra by excitonic effects is expected to be weaker for
indirect optical transitions than for direct ones; this is due to
the location of the band-extrema wave functions in indirect-gap
materials, which are at different points in the BZ, resulting in
smaller wave-function overlaps and hence smaller magnitude
of the Coulomb interaction between an electron and a hole
pair, than in the case of direct transitions.

4.2.2 Absorption spectra of surfaces. In this section, we
consider absorption spectra of TiO2 and silicon surfaces.

Fig. 7 Absorption spectrum of bulk silicon computed by solving the BSE and
with the TDLDA, compared to the experimental results. A Lorentzian broadening
of 0.11 eV has been added to the computed curves. Reprinted with permission
from ref. 31. Copyright 2012 by the American Physical Society.

Fig. 6 Absorption spectrum (ImeM) of WO3 computed by solving the Bethe–
Salpeter Equation (BSE) and that of Na0.65WO3 obtained by reflectivity experi-
ments204 (EXP). A Lorentzian broadening of 0.04 Ry was added to the computed
curve. The low energy rise of the experimental spectra is due to extra electrons
from Na filling the bottom of the conduction band (see text). Reprinted from
ref. 157.
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A particularly important role in the photocatalytic perfor-
mances of anatase TiO2 is played by the exposed surfaces:210

the minority (001) facets seem to be more reactive211,212 than
other orientations and present a lower concentration of
defects213,214 compared to other anatase orientations and
rutile surfaces. Both (1 � 4) reconstructed and (1 � 1) clean
unreconstructed surfaces were obtained under particular
experimental conditions. The connection between the optical
properties and the structure of anatase TiO2(001) surfaces was
studied in ref. 210. As shown in Fig. 9(c), the anatase surfaces
and bulk anatase density of states (DOS) are similar except for a
peak, mainly associated to the VBM states of the (1 � 1)
unreconstructed and (1� 4) reconstructed surfaces, respectively.
Despite the similarity of DOS between the two reconstructed
surfaces, Fig. 9(a) and (b) show that the VBM states have distinct
characters on the two surfaces, which significantly affect the
optical absorption. For example, the optical spectrum of the
(1 � 4) reconstructed surface computed by GW-BSE (Fig. 10(d))
appears to be very similar to that of bulk anatase, while for the
(1 � 1) unreconstructed surface, optical absorption is present
below the first bulk absorption peak B1 (Fig. 10(c)). The physical
origin of the different optical absorption of the two surfaces is
related to the different characters of the VBM states shown in
Fig. 9(a) and (b) respectively. In addition, the experimentally
observed enhanced photocatalytic activity of anatase nanostruc-
tures with a high percentage of (001)-(1 � 1) facets was explained
by the different types of electron–hole spatial distributions
between two reconstructed surfaces.210 For example, in the
(1 � 4) reconstructed anatase surface the exciton is completely
delocalized in the subsurface region and bulk part of the slab;
this is not a favorable configuration for electron and hole
separation and subsequent chemical reactions of water splitting.
Instead, in the (1 � 1) unreconstructed surface electrons and
holes are spatially separated and both present at the surface,
which is a desired feature for the photo-induced splitting of
water molecules. These results suggest that anatase with (001)
orientation, mainly its (1 � 1) unreconstructed surface, is
photocatalytically efficient.215

We now turn to silicon surfaces and before presenting
specific results, we recall the effects of surface states on optical

absorption as they play an important role in the case of Si. For
example, reconstructed surfaces such as Si(111)-(2 � 1)216,217 or
Si(100)-(c4 � 2)218 exhibit surface states in the middle of the
bulk fundamental gap and these determine the main features
of their reflectance anisotropy spectroscopy (RAS) or surface
differential reflectivity (SDR) spectra; on the other hand, the
passivation of the surface dangling bonds by hydrogen results
in no surface states in the energy region probed by RAS e.g. for
the Si(110)–H terminated surface.219 We also recall that the

Fig. 9 (a) Large yellow (small, blue) spheres represent Ti(O) atoms for the (1 � 1)-
(001) surface. Magenta isosurface: |c|2 of the VBM, at G(at 1% of its maximum value).
(b) As in (a) but for the (1 � 4)-(001) surface. (c) DOS of bulk anatase (black full line),
(1� 1)-(001) (dotted-dashed yellow line), of (1� 4)-(001) (red dashed line). Reprinted
with permission from ref. 210. Copyright 2011 by the American Physical Society.

Fig. 10 Macroscopic dielectric function eM
2 (o) for (1 � 1) (left column) and

(1 � 4)-(001) (right column) case. (a) and (b) Spectra calculated at independent
quasiparticle level. (c) and (d) As before but calculated including the local-field
effects and the e–hole coulomb attraction. The black solid (orange dashed) curves
are for light polarized along the [100] ([010]) direction. Inset of panel (a): bulk
BSE (blue curve) and experimental (red diamonds, ref. 36) spectrum for light
polarized perpendicular to c. The arrows indicate the exciton energies under
consideration. Reprinted with permission from ref. 210. Copyright 2011 by the
American Physical Society.

Fig. 8 Onset of the phonon-assisted optical absorption in silicon, as a function
of photon energy and temperature. The theoretical results (solid lines) are in
good agreement with experimental ones (dashed lines). Experimental data are
from ref. 209. The theoretical curves were shifted horizontally to match the onset
of the experimental spectra. Reprinted with permission from ref. 209. Copyright
2012 by the American Physical Society.
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basic features of surface absorption probes, RAS220,221 and
SDR.222–224 RAS measures the difference in reflectance (DR) of
normal incidence plane-polarized light between two orthogonal
directions in the surface plane (x, y) normalized to the mean
reflectance (R0):

DR
R0
¼ Ry � Rx

R0
: (83)

SDR yields the relative change in reflectivity between the
clean (Rclean) and adsorbate-covered (Rads) surfaces:

DR
R
¼ Rclean � Rads

Rads
: (84)

The two methods are complementary: RAS yields the subtle
difference of reflectance between two directions, which can be a
small quantity, if the optical response of the surface is only
weakly anisotropic; SDR yields instead the change of the
surface optical reflectance due to the coverage. In general,
the adsorbates bound to surface atoms are expected to suppress
the presence of surface states in semiconductors. Conse-
quently, the SDR spectra give mainly the contribution of the
surface states to the surface reflectance.218

When modeling a semiconductor solid within the repeated
slab approach, the RAS can be calculated for normally incident
light by:225

DRiðoÞ
R0ðoÞ

¼ 4od
c

Im
4pðahsxxðoÞ � ahsyyðoÞÞ

EbðoÞ � 1
(85)

where EbðoÞ is the bulk macroscopic dielectric function (see
eqn (61)); ahs

ii (i = x,y) is the half-slab polarizability, obtained,
e.g. by eqn (67); d is half of the slab thickness.

Calculations of surface optical spectra using MBPT are
much more demanding than the corresponding ones for bulk
materials. For example, the convergence of BSE spectra as a
function of the size of supercells is much slower than the one of
ground state calculations because of the long range electron
hole interaction; in addition, many atomic layers are usually
required to build a slab with a thickness appropriate to
describe surface perturbed bulk wave functions. Calculations
with thin slabs may overestimate excitonic effects due to
insufficient screening. Furthermore, in several bulk semi-
conductors, self-energy corrections rigidly shift the conduction
band energies, providing some theoretical basis for the use of
scissor operators.226 However, such an approximation is usually
not justified for surfaces, especially when surface states are
present.183,217 In general, inclusion of self-energy corrections
leads to a non-uniform shift of optical transition energies,
affecting the RAS lineshape rather than simply shifting the
energy scales.

Optical properties of Si surfaces were extensively studied.
For example, calculations for the monohydride Si(001)-(2 � 1)
surface,227 showed that the GW corrections and excitonic
effects play a crucial role in achieving good agreement with
experiments, while the local field effects appear to be less
important, similar to the case of Si(110):H surface.219 In
ref. 227, the measured RAS signal is characterized by positive

and negative peaks around 3.4 and 4.3 eV, arising from surface
induced bulk anisotropy or intrinsic contributions. Interestingly,
the Si(001)-(2 � 1) clean surface with dangling bonds218 has a
reflectance anisotropy (RA) signal around 1.5 eV because of
surface states p–p* transition, which is strongly reduced in the
case of monohydride Si(001)-(2 � 1) surface. Indeed the
adsorbed H atoms on the monohydride Si(001)-(2 � 1) surface
suppresses the presence of surface states which contribute to the
RA signal around 1.5 eV in the Si(001)-(2 � 1) clean surface case.

4.2.3 Absorption spectra of nanostructured electrodes. For
the last example of first principle calculations of realistic
materials for PEC cells, we turn to nanostructured systems.
Nanostructured electrode morphologies can be used to address
some of the intrinsic limitations of bulk materials for PEC
applications.228 The most obvious advantage of a nanostruc-
tured morphology is the increase of surface to volume ratio.
The increase in the number of surface sites greatly enhances
the overall charge transfer kinetics at the semiconductor/
electrolyte interface and relaxes catalytic activity requirements.
The second advantage is the shorter diffusion path lengths for
the photogenerated charge carriers in one dimensional (1D)
nanostructures. For example, in a traditional planar device,
photogenerated carriers must cross the entire thickness of the
cell in order to be collected before recombination. The cell
thickness is dictated by how much material is necessary to
absorb the incoming light. By using nanowires, the direction of
light absorption and the direction of carrier collection is ortho-
gonalized. For high-aspect ratio nanowires (i.e., wires having a
high length/radius ratio), the length necessary for full optical
absorption can be readily obtained, while the distance over
which carriers are collected can be minimized, being only the
radius of the nanowire; such a design offers the potential for
efficient charge-carrier collection from even very impure, low
diffusion length materials.2 Similar advantages are offered by
nanostructures based on cauliflower-type morphologies or
randomly packed spheres.229,230 The third possible advantage
of using nanostructured materials is the so called quantum
confinement effect. It is known231 that spatial confinement of
charge carriers to a volume that is less than their De Broglie
wavelength results in a widening of the band gap. Even though
the resulting blue shift of the absorption spectrum is usually
not desirable for PEC absorbers, the widening of the band gap
could be designed to shift the conduction or valence band edge
toward ideal directions (band edge positions that straddle the
water reduction and oxidation potentials),232,233 thus decreas-
ing the required bias potential and increasing the solar to
hydrogen conversion efficiency.

Despite nanoparticles being widely utilized for dye sensi-
tized solar cell (DSSC) applications, their utilizations as photo-
electrodes in photoelectrochemical cells for separating
hydrogen and oxygen production is relatively rare.228 This is
because the discrete nature of nanoparticle energy levels can be
a major disadvantage for charge transport. However, some
three-dimensional nanostructures (such as the cauliflower
type hematite materials229) consisting of interconnected nano-
particles could offer higher accessible surface areas than
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conventional bulk structure; and the interlinked branches
could lead to superior charge transport. Several nanocrystalline
films234–237 were reported for solar water splitting applications,
for example nanocrystalline films of Fe2O3,

234 WO3,
230 BiVO4

236

and Cu2O.237

A great amount of research on the syntheses and character-
izations of 1D nanostructures for solar water splitting purposes
was reported, including TiO2 nanotube238/nanowires,239 WO3

nanowires,240 as well as silicon nanowires.241,242 Experi-
mentally it was shown that Si nanowires (SiNW) have enhanced
absorption and carrier collection for photovoltaic and PEC
applications.241,242 In addition, porous silicon samples which
closely resemble the geometry structure of free-standing Si
rods, were investigated in photoelectrochemical cells.243 Intro-
duction of a network of B2–3 mm diameter, B80 mm long pores
into Si was found to lead to energy-conversion efficiencies in
excess of 10%.

Many theoretical studies appeared in the literature on the
optical properties of SiNW.244–250 Two fundamental effects were
taken into account in order to obtain physically sound
results:251 (i) local field effects, which lead to a strong suppres-
sion of the absorption of light polarized perpendicular to the
NW axis, dramatically increasing the optical anisotropy of the
system; (ii) excitonic effects, which are stronger in one dimen-
sional systems, due to the spatial overlap between electron and
hole wavefunctions. Due to excitonic effects, the absorption
spectra of wires can be red shifted and their oscillator strength
can be redistributed, with respect to those of the bulk. Using a
GW-BSE framework, the above two effects are both included in
the calculations.

First principle calculations of optical spectra of wires are
still challenging and numerical accuracy needs to be carefully
controlled. Ref. 250 extensively discussed how to control all the
numerical parameters entering such calculations and how to
evaluate error bars on computed spectra. It is key to take into
account numerical errors when comparing with experiments
and with results obtained using the same level of theory, but
different numerical techniques and algorithms. For example,
the convergence of absorption spectra as a function of cell size
is much more delicate at the BSE level of theory than within
TDLDA, as the electron hole interaction is absent within TDLDA
but present in BSE. The conventional cylindrical Coulomb
cutoff252 can speed up the convergence of cell sizes but cause
slower convergence with k point sampling.250

Recent calculations showed that244,250 the absorption
spectra of SiNWs depend significantly on the diameters, growth
direction and surface structures. As an example, Fig. 11 shows
the BSE spectrum for a 0.8 nm SiNW grown in the [110]
direction with two different surface geometries, which are all
hydrogen terminated. It is seen that in a broad energy range,
the spectra are very sensitive to the surface structures. This
indicates that care must be exercised when comparing theore-
tical and experimental results, as apparently small differences
in the atomic arrangement may give rise to substantial differ-
ences in the band structure close to the Fermi level, and also to
substantial differences in the matrix elements entering the

definition of absorption spectra. An analysis of the band
structure for the two geometries revealed the position of levels
close to the top of the valence bands is influenced by the
surface structure (e.g. the HOMO of the wire with a canted
surface is 0.2 eV lower than that of the wire with a symmetric
surface). The first peak to which the HOMO has a large
contribution is blue shifted in the wire with a canted surface.
However, in the wire with a canted surface the main excitonic
peak is red shifted and merged with the first peak, indicating a
stronger exciton binding. Differences are also visible at the
TDLDA level (see Fig. 11(c)), especially in the low energy range,
where transitions between levels close to the top of the valence
bands and bottom of the conduction bands are involved.

Using GW-BSE calculations, ref. 244 obtained SiNW
excitonic gaps in good agreement with the experimental photo-
luminescence gaps254,255 of porous silicon samples. The calcu-
lated exciton binding energy is 1.8 eV, much larger than the
one of bulk Si (B14 meV); this result was explained by the
confinement of electron hole wavefunctions in the nanowire
structure.

Experimentally SiNW arrays instead of isolated SiNWs are
used to build water splitting devices.241 It is thus interesting to
study how the interaction between wires modifies the optical
absorption. Fig. 12 shows the RPA absorption spectra of SiNWs
as a function of inter-wire distance ranging from 2.1 to 11.2 Å.
As the local field effects strongly suppress the absorption of

Fig. 11 Absorption spectra [ImeM(o)] of a 0.8 nm Si nanowire grown in the
[110] direction with canted (d) and symmetric (b) surface geometries (from
ref. 250). (a) BSE spectra for Si NWs with different surface geometries. A cell size
of 50 a.u. was used, and 16 k points for the BZ sampling, a kinetic energy cutoff of
12 Ry to solve the Kohn–Sham equations, the technique of ref. 63 and 70 to
evaluate the Fock operator, and a Coulomb cutoff253 to evaluate the dielectric
matrix. A scissor operator was obtained by computing the difference between
the lowest energy gap within LDA and G0W0. (c) TDLDA spectra for Si NWs with
different surface geometries, obtained with a cubic cell of lateral dimension equal
to 50 a.u. and 16 k-points for the BZ sampling. Reprinted with permission from
ref. 250. Copyright 2012 by the American Physical Society.
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light polarized perpendicular to the NW axis, the optical
absorption along the direction perpendicular to the wire axis
starts after 5 eV for inter-wire distances larger than 5 Å. For
distances larger than 9 Å, the absorption spectra of interacting
and isolated NWs are very similar, indicating that the inter-
action is weak. Interestingly, as inter-wire distances decreases
from 5 Å, the spectra along the perpendicular direction move
towards the red part of the spectrum, indicating that the optical
anisotropy is considerably decreased. At 2 Å inter-wire distance,
the absorption edges in the parallel and perpendicular direc-
tions become very similar. By contrast, the absorption edge of
light polarized parallel to the NW axis is almost unchanged as a
function of the inter-wire distance, except at 2 Å. Although RPA
spectra (including local field effects) do not include quasi-
particle (QP) corrections and electron–hole (e–h) interaction,
it is possible to use them to extract qualitative trends due to the
partial cancellation of error arising from the two effects.251

Ref. 244 found that for light polarized along the wire axis, a
simultaneous reduction of the e–h interaction and of the QP
gap correction result in an almost unchanged position of the
BSE optical threshold, when comparing interacting with iso-
lated SiNWs.

The influence of doping (n- or p-type) on the optical proper-
ties of SiNWs was not yet extensively studied. Some results were
reported in ref. 247, where it was shown that peaks around 2 eV
appear below the threshold of absorption of pure SiNWs, due to
the presence of dopant related states. The quasiparticle correc-
tions on the electronic gaps are only weakly dependent on the
type of dopant, with variations of the order of 0.1 eV. The e–h
exchange splittings of doped SiNWs, which can be compared
with photoluminescence experiments, were computed by
GW-BSE without considering spin–orbit interaction in ref. 247.
A giant e–h exchange splitting, which is three times as large as
that of bulk Si was predicted, and it can be explained by the
dramatic enhancement of the e–h overlaps in the confined
structure of SiNWs.

5 Conclusion and outlook

In summary, we presented the basic concepts underlying first
principles calculations of charged and neutral excitations
within many body perturbation theory (MBPT), with emphasis

on band structures and band edges, and on absorption spectra
of solids. We focused on the properties of light absorbers
used in photoelectrochemical cells. The theory was presented
in Section 2 and the numerical methods were described
in Section 3, while examples of specific calculations were given
in Section 4.

In particular, we presented the basic definitions of Green’s
function theory and introduced the equations satisfied by
single and two-particle Green’s functions, the Dyson’s
equation18,36 and the Bethe Salpeter Equation27 (BSE),
respectively. The poles of the single particle Green’s function
represent the energies necessary to add or remove an electron
from a given solid or molecule. These energies are directly
comparable to those measured, e.g. in photoemission experi-
ments. The poles of the correlation function defined from the
two-particle Green’s functions correspond to neutral excitation
energies of interacting electrons. These neutral excitations may
be, for example, an electron and a hole in a semiconductor,
created by the interaction with incident light, and they are
directly related to those measured in absorption experiments.

The Dyson’s equation relates the single-particle Green’s func-
tion to the effective many body potential of interacting electrons.
Such complex interaction potential is called self-energy, and one
may define a Schrödinger-like equation where the self-energy
enters as a mean field potential acting on single-particle states.
Those, among such states, with a long lifetime are called quasi-
particles. The concepts of self-energy and quasi-particles are
central concepts in MBPT, and in the interpretation of spectro-
scopic measurements of solids and molecules.

While the single-particle Green’s function satisfies the
Dyson’s equation, the two body correlation function satisfies
the BSE. The self-energy enters the Dyson’s equation, while the
derivative of the self-energy with respect to the single-particle
Green’s function enters the BSE. In the recent literature, solving
the BSE to obtain absorption spectra has been the strategy of
choice for most solids;28–31 in the case of molecules many
calculations of absorption spectra are carried out using time
dependent DFT.67,256–258 We emphasize that the BSE may be
used for both molecules and solids and, in principle, for any
material, irrespective of its morphology.

After introducing the basic concepts of Green’s function
theory, we discussed their relation to the key concepts entering
linear response theory, including reducible and irreducible
polarizabilities and the dielectric matrix. We used linear
response theory to describe optical absorption experiments
because the electric field of the incident light (the perturbation)
is small compared to the internal field of the system. One of the
key quantities of linear response theory and MBPT is the
dielectric matrix, which describes how an external perturbing
potential is screened within a solid and a molecule, by the
presence of interacting electrons. The dielectric matrix is also
used to define an effective, screened Coulomb potential (W)
acting among the electrons. Using a perturbative series in
terms of the screened Coulomb potential and an approximation
of the self-energy in terms of such potential, we introduced
the GW approximation43 to compute quasiparticle energies.

Fig. 12 Absorption spectra [ImeM(o)] of Si nanowires placed at different
distances (D), computed within RPA with local field effects. Left: 0.4 nm Si
nanowire grown in the [001] direction with light polarized perpendicular to
the wire axis. Right: 0.4 nm Si nanowire grown in the [001] direction with light
polarized parallel to the wire axis.
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Calculations at the GW level of theory represent the most
advanced computations of band structures and band edges
carried out at present for complex materials, including photo-
electrodes.

Having established the basic concepts of Green’s function,
many body perturbation and linear response theories, we
turned from theory to computation. We discussed numerical
techniques to compute quasi-particle energies and optical
spectra, with emphasis on algorithms that do not require the
explicit calculation of empty (virtual) single particle states. Such
algorithms are instrumental in making possible calculations of
large systems and thus of realistic materials. We emphasize
that in order to assess the accuracy of the theory, numerical
parameters need to be controlled with great care. The same level
of theory implemented with different levels of accuracy, from a
numerical standpoint, may lead to qualitatively different predic-
tions or interpretation of experiments. An example of such
differences was presented for the optical gaps of TiO2 and WO3.

In our discussion of specific calculations, we chose repre-
sentative photoanode and photocathode materials and we
summarized MBPT results of band edges and absorption
spectra. We mostly focused on two oxide materials for the
photoanode, TiO2 and WO3 and on silicon for the photo-
cathode, with emphasis on functionalized silicon surfaces.

Although much progress was made in recent years to com-
pute the electronic properties of molecules and solids from first
principles, beyond approximate DFT theories, outstanding
challenges remain in the theoretical and computational
description of materials for photoelectrochemical energy con-
version. An accurate determination of band alignments of
photoeletrodes with water redox potentials requires the explicit
calculation of the electronic properties of semiconductor–
liquid interfaces. This remains a challenging task, as it encom-
passes the determination of the interface structural properties,
and GW calculations of systems with possibly thousands of
electrons. Although GW calculations for systems containing
several hundreds of electrons24,25 are now feasible, they are not
yet routine tasks: they require substantial computational
resources and are thus difficult to carry out for multiple
samples at a time (and multiple samples may be required,
e.g. to investigate different types of defects at the interface). In
addition simulations of liquid water themselves, even in the
absence of interfaces, are challenging,259,260 as the level
of theory necessary to obtain, at the same time, reasonably
good structural and electronic properties is yet unclear.
Furthermore, one would need to simulate water with dissolved
ions under different pH conditions, interfaced with a semi-
conductor, not just pure water. An accurate description of
certain solvated ions (e.g. most of the anions) requires the
use of hybrid functionals,261 as semi-local ones often yield an
incorrect localization of the charge around the anion, and
hybrid functional calculations of liquid water are still compu-
tationally demanding259 for large samples. As for absorption
spectra, even with methods that avoid the explicit calculation of
empty single particle states, the solution of the BSE for several
hundreds of electrons is a heavy computational task. In addition

improvements of the theory are necessary to include indirect
transitions at the absorption onset and electron–phonon
interaction.

We note in closing that here we only dealt with light
absorbers for water splitting and thus with electronic structure
calculations; clearly one will need to go beyond static electronic
properties and acquire capabilities to describe charge trans-
port, in order to fully understand water splitting processes.

This work was supported by the grant NSF-CHE-0802907. We
thank Michiel Sprik and Márton Vörös for a critical reading of
the manuscript, and Marco Govoni and Tuan Anh Pham for
useful discussions.
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