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The GW approximation to the electronic self-energy yields band structures in excellent agreement with
experimental data. Unfortunately, this type of calculation is extremely cumbersome even for present-day
computers. The huge number of empty states required both in the calculation of the polarizability and of the
self-energy is a major bottleneck in GW calculations. We propose an almost costless scheme, which allows us
to divide the number of empty states by about a factor of 5 to reach the same accuracy. The computational cost
and the memory requirements are decreased by the same amount, accelerating all calculations from small
primitive cells to large supercells.
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I. INTRODUCTION

Calculating the correct electronic band structure of a
solid, especially in the band-gap region, is not a trivial task
for ab initio methods. The commonly used density-functional
theory �DFT�1,2 is notoriously insufficient in that respect. To
get realistic band structure from the computer, one has to
resort to more accurate but also more cumbersome methods.
In this context, Hedin’s GW approximation3–5 to the elec-
tronic self-energy has encountered a wide success for sys-
tems where correlation effects are not strong. Unfortunately,
the cost of such calculations is generally two orders of mag-
nitude higher that their DFT counterpart. Furthermore, the
need to study nanowires, interfaces, or defects drives the
interest of the scientific community towards larger and larger
systems. It is urgent to find reliable techniques to speed up
the GW approach and make it tractable for a wider range of
applications.

The GW self-energy is a convolution of the Green’s func-
tion G and the screened Coulomb potential v�−1

���� =� d��G�� + ���v�−1���� , �1�

where v is the Coulomb interaction and �−1 is the inverse
dielectric matrix. The dielectric matrix in turn is obtained
from the random-phase approximation �RPA�

���� = 1 − v�0��� , �2�

with �0��� being the Kohn-Sham polarizability. A practical
GW calculations consists of evaluating the polarizability
�0��� and then of performing the convolution in Eq. �1�.

The main bottleneck in the efficiency of a GW calculation
is the dependence with respect to the empty states. In con-
trast with Kohn-Sham DFT, the two ingredients in a GW run,
i.e., the polarizability and the GW self-energy itself, both
involve explicitly the unoccupied states. The evaluation of
the GW band structure requires, first, calculating a huge
quantity of empty Kohn-Sham eigenvectors and eigenvalues
and, second, using them in sums running over all the states

of the system. The poor convergence of the GW approxima-
tion with respect to the empty states has been recognized
long ago.5–7 In order to be exact, the number of states should
be the same as the dimension of the Hilbert space that is
equal to the number of basis functions. In a plane-wave basis
or in a real-space representation, the dimension of the space
is huge �typically from thousand to millions�. As a conse-
quence, a speedup of the GW approach should address the
elimination or the reduction in the number of empty states in
the calculations. This direction has already been identified by
several other groups.8,9 However, the previously proposed
techniques are not widely used nowadays because of either
low efficiency or because the cost exceeds the benefits for
the available system sizes.

In the context of the optimized effective potentials, the
same problem arises—one needs to invert the empty state-
dependent Kohn-Sham polarizability in order to obtain the
local Kohn-Sham potential that represents best a nonlocal
exchange-correlation operator.10 For this framework, several
schemes have been developed to get rid of the empty states
dependence. In the 50’s, Sharp and Horton11 have already
proposed a rough approximation, which was then reused in
the celebrated Krieger-Li-Iafrate approximation of the
exchange-only potential.12 More recently, Gritsenko and
Baerends13 improved much on this approach with their com-
mon energy denominator approximation �CEDA�.

In this paper, we propose a technique that allows us to
reduce the number of unoccupied states required in the two
steps of a GW calculation �for the polarizability and the self-
energy� in a plane-wave implementation. In order to achieve
this goal, we transpose the CEDA trick of Gritsenko and
Baerends13 into the framework of the GW approximation.
For the polarizability step, this corresponds to a simple ex-
tension of the extrapolar method of Anglade and Gonze.14 By
replacing the eigenenergies of the states that are not treated
explicitly by a common energy, determined with respect to
the highest computed eigenstate through a single adjustable
parameter, we will be able to take into account all the states,
which are not explicitly included in the calculation through
the closure relation
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�
i�Nb

�i��i� = 1 − �
i�Nb

�i��i� , �3�

where Nb is the number of states explicitly included in the
calculation. The principle can be extended to other formula-
tions which have a large Hilbert-space dimension such as
real-space approach. This permits us to provide a correction
to the polarizability and to the self-energy that approximates
the effect of the states not explicitly taken into account. The
only drawback of the extrapolar approximation is the intro-
duction of a parameter that can be thought as ad hoc. In this
paper, we also present a formula that gives an ab initio
evaluation of this parameter.

In Sec. II, we focus on the computation of the polarizabil-
ity with a limited number of empty states. After developing
the corresponding equations, we examine the effect of the
number of empty states treated in the polarizability on the
GW corrections for the band gap of SiC. In Sec. III, we
propose to use the sum rule for the first moment of the di-
electric function to analyze the effect of the eigenenergy ap-
proximation as a function of the transferred momentum.
Thanks to a proper weight factor; the best value for the ad-
justable parameter might be determined. In Sec. IV, we per-
form the same approximation in the self-energy expression
assuming the dynamically screened Coulomb interaction to
be well represented by a generalized plasmon-pole model for
the large-energy transfers. The adequacy of this approxima-
tion increases with the number of states explicitly computed.
Unlike for the polarizability, no sum rule exists for the self-
energy. However, we argue that the value of the adjustable
parameter, optimized for the polarizability, is likely close to
the optimal value for the self-energy. We apply the method-
ology to the case of bulk SiC, to a 64-atom supercell of SiC,
to the insulator of argon, and also to an isolated benzene
molecule.

II. POLARIZABILITY WITH A LIMITED NUMBER OF
EMPTY STATES

In this section, we recapitulate the extrapolar approxima-
tion of Ref. 14 for the empty states that are not included
explicitly in the calculation and derive the corresponding
correction to the independent-particle polarizability �0.

The formulas are written here for spin-unpolarized and
nonmetallic systems, but they can be straightforwardly ex-
tended to spin-polarized systems and to metals by introduc-
ing fractional occupations. Using the time-reversal symme-
try, the independent-particle polarizability in reciprocal space
and frequency reads

�0GG��q,�� =
2

Nk�
�
k

Nv�i�Nb

j�Nv

Mkij�q + G�Mkij
� �q + G��

	� 1

� − �
kj − 
k−qi� − i�

−
1

� − �
k−qi − 
kj� + i�
	 , �4�

where � is the volume of the unit cell, Nv is the number of
valence states, Nk is the number of k points in the Brillouin
zone �the index k runs over the k points of the Brillouin
zone�, and where the matrix elements

Mkij�q + G� = �k − qi�e−i�q+G�.r�kj� �5�

are the so-called oscillator strengths.
In practice, the number of unoccupied states needed in

Eq. �4� can be very large in order to converge the value of
the self-energy calculated using this polarizability. In this
paper, the numerical applications are performed first on bulk
�-SiC, which is slightly more sensitive than the prototypical
bulk silicon to the number of states. The solid curve in Fig. 1
illustrates the convergence of the correlation part of the self-
energy at the top of the valence band and at the bottom of the
conduction band �and the resulting band gap� as a function of
the number of unoccupied bands considered in the calcula-
tion of �0. More than 100 empty states are required to obtain
the self-energy at the top valence 15v with the typical accu-
racy of GW calculations, i.e., 50 meV. Furthermore, Fig. 1
shows that the convergence rate of the bottom conduction
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FIG. 1. �Color online� Convergence study of the correlation part
of the self-energy at top valence �upper panel� and at bottom con-
duction �middle panel� and of the band gap �lower panel� of �-SiC
as a function of the number of unoccupied states explicitly included
in the calculation of the polarizability. The solid curve shows the
usual GW result with no correction. The other curves include the
correction of Eq. �8� with different values for the energy parameter

̄�0

: 0.5 Ha , 1.0 Ha , 2.0 Ha, and 3.0 Ha above the last explicitly
calculated band.
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band X1c is not the same as of 15v. Therefore, it would be
interesting to accelerate this poor convergence; thanks to a
properly defined correction.

The extrapolar approximation proposes to attribute to all
the states above Nb the same “average” high energy �̄�0

.
Obviously, this energy should lie higher than the energy of
the last actually calculated band. But so far, this energy is
considered as a parameter.

Let us define the correction �GG��q ,��, which is the
quantity neglected in Eq. �4� due to the truncation of the
unoccupied state sum. Introducing this average energy in this
correction allows one to change the order of the sums as
follows:

�GG��q,�� =
2

Nk�
�
k

j�Nv

� 1

� − �
kj − 
̄�0
� − i�

−
1

� − �
̄�0
− 
kj� + i�	

	 �
i�Nb

Mkij�q + G�Mkij
� �q + G�� , �6�

in which the only quantity depending on the empty states i
are the oscillator strengths Mkij�q+G�.

The closure relation can be straightforwardly applied to

�
i�Nb

Mkij�q + G�Mkij
� �q + G��

= �kj�ei�G�−G�.r�kj� − �
i�Nb

Mkij�q + G�Mkij
� �q + G�� ,

�7�

in order to get rid of the states above Nb. The final expression
for the correction to the independent-particle polarizability
within the extrapolar approximation is

�GG��q,�� =
2

Nk�
�
k

j�Nv

�kj�ei�G�−G�.r�kj�� 1

� − �
 j − 
̄�0
� − i�

−
1

� − �
̄�0
− 
kj� + i�	

−
2

Nk�
�
k

i�Nb

j�Nv

Mkij�q + G�Mkij
� �q + G��

	� 1

� − �
kj − 
̄�0
� − i�

−
1

� − �
̄�0
− 
kj� + i�	 .

�8�

The calculation of this correction does not require much
coding when the polarizability is already available. Further-
more, it produces very little overhead in the calculation time.
Indeed, the first term in Eq. �8� does not have any sum over
empty states and basically requires one fast Fourier trans-
form per k point and per occupied state. The second term can

be merged with the corresponding part in the calculation of
�0 for each triplet index �kij�. So it does not add any com-
plex operation. The calculation of the correction is really for
free.

The extrapolar approximation is not designed to yield the
right frequency-dependent polarizability. As this approxima-
tion replaces the many neglected high-energy transitions by a
single transition with a large weight, the imaginary part of
the polarizability would look like a single � peak at high
energy instead of a continuous spectrum. Nevertheless, one
can reasonably hope that this approximated polarizability,
when integrated, retains some physics. The GW self-energy
is precisely an integrated quantity as seen in Eq. �1�. Let us
check before this assumption on the static dielectric matrix.
The static dielectric matrix can be considered as an integra-
tion of the frequency-dependent dielectric function through
the Kramers-Kronig relation

Re
��� = 0�� = 1 +
1

�
P�

−�

+�

d��
Im
������

��
. �9�

Table I shows the convergence with or without correction of
the static inverse dielectric matrix. The value of the average
extrapolar energy 
̄�0

is referenced with respect to the highest
calculated energy 
Nb

. It can be observed from the data that
whatever the choice of the extrapolar energy �in a reasonable
range�, the convergence of diagonal and off-diagonal ele-
ments of the dielectric matrix is accelerated.

Now let us describe the quality of the extrapolar correc-
tion for the polarizability when it is used to evaluate the GW
self-energy. The performance for �-SiC is shown in Fig. 1.
Whatever the value of 
̄�0

, the convergence of the self-energy
and of the band gap is improved significantly; thanks to the
correction. When 
̄�0

is chosen too high with respect to the
last calculated band, the correction vanishes and the results
tend to the uncorrected one. When 
̄�0

is chosen too close to
the last calculated band, the correction is then slightly over-
estimated. The best fit is obtained for an average energy of
around 2.0 Ha above 
Nb

. If a reasonable value for 
̄�0
is

used, the number of empty states can be lowered to around
20 to achieve the 50-meV accuracy. This corresponds to five
times fewer states as without correction. As a conclusion, the
numerical application strongly supports the use of the correc-
tion to the polarizability.

III. USING A SUM RULE TO DETERMINE THE ENERGY
PARAMETER

In Sec. II, we have shown that the precise determination
of the average energy 
̄�0

is not crucial as it provides an
accurate correction for a wide range of 
̄�0

. However, it
would be desirable to have a tool, which measures the qual-
ity of a choice of an average energy 
̄�0

without knowing
before the exact target result.

A common procedure to assign the value of parameters is
to enforce the fulfillment of exact relations. For response
functions, there exists a class of integrals, of which the value
is known exactly. For instance, the first moment of the in-
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verse dielectric matrix �d�� Im �−1q ,�� is fixed by the so-
called f -sum rule. This relation allowed Hybertsen and
Louie15 to calculate the free parameters of their model to
represent the inverse dielectric matrix.

In the present case, the evaluation of the f-sum rule would
not be adequate because it would require either modeling the
inverse dielectric function or performing a numerical fre-
quency integration subjected to discretization error. Instead,
another sum rule exists for the first moment of the dielectric
function itself;16,17

�
0

+�

d�� Im�GG�q,��� =
�

2
�p

2, �10�

where �p=�4�n is the classical plasma frequency �n being
the average electronic density�. The sum rule in Eq. �10�,
although not valid in general, has been shown to be true for
the RPA dielectric matrix.17 The RPA is precisely the ap-
proximation used for the GW self-energy. In the present dis-
cussion, we will concentrate only on the diagonal elements
of the dielectric matrix since these elements yield by far the
largest contribution to the GW self-energy.

In the RPA approximation, the dielectric matrix is related
to the independent-particle polarizability through 
���=1
−v�0���, where v is the Coulomb potential. Hence, the sum
rule of Eq. �10� reads

�
0

+�

d��
4�

�q + G�2
Im�0GG�q,��� = −

�

2
�p

2, �11�

in which 4� / �q+G�2 is the Fourier transform of the Cou-
lomb potential v.

The check of the validity of Eq. �11� provides a stringent
test on the completeness in the calculation of �0. If the sum
over states in Eq. �4� has been truncated, the integral in the
left-hand side of Eq. �11� will be too small. The advantage of
Eq. �11� with respect to the f-sum rule is that the evaluation
of the integral can be performed analytically, as the fre-
quency dependence of Im�0���� consists only of a series of
� peaks; thanks to the classical identity

lim
�→0

1

� + i�
= P 1

�
− i����� . �12�

Practically, introducing the expression of Im�0� in Eq. �11�,
it reduces to

4�2

Nk��q + G�2 �
k

Nv�i�Nb

j�Nv

�Mkij�q + G��2�
k−qi − 
kj� =
�

2
�p

2.

�13�

In the upper panel of Fig. 2, we report for �-SiC the
evaluation of the left-hand side of Eq. �13� as a function of
the transferred momentum �q+G� of different number of un-
occupied bands included in the calculation. When almost all
the states available are included in the calculation �550 un-
occupied bands�, the sum rule is verified for any value of
�q+G�. Contrastingly, when only a few empty states are
taken into account �e.g., ten unoccupied bands�, the sum rule
is only approximately satisfied for low transferred momenta.
This expresses the fact that well-separated occupied and un-
occupied states can couple through electronic transition with

TABLE I. Convergence study of some selected elements of the inverse dielectric matrix of �-SiC as a
function of the number of empty bands explicitly included in the calculation of the polarizability. The first
element is the macroscopic static dielectric constant. The second element is a diagonal element and the last
one is off diagonal.

Number of empty states �Nb−Nv�
Extrapolar energy �Ha� 4 10 20 50 200

1 /��000�,�000�
−1 �q→0,�=0� No correction 6.617 6.722 6.737 6.748 6.755

0.5 6.728 6.790 6.762 6.753 6.754

1.0 6.700 6.776 6.758 6.753 6.754

2.0 6.673 6.761 6.753 6.752 6.754

3.0 6.659 6.752 6.750 6.751 6.754

��100�,�100�
−1 �q→0,�=0� No correction 0.792 0.708 0.662 0.645 0.645

0.5 0.637 0.645 0.646 0.644 0.645

1.0 0.676 0.658 0.648 0.644 0.645

2.0 0.715 0.673 0.652 0.645 0.645

3.0 0.735 0.681 0.654 0.645 0.645

��100�,�01̄0�
−1 �q→0,�=0� No correction 0.037 0.030 0.027 0.026 0.026

0.5 0.026 0.026 0.026 0.026 0.026

1.0 0.029 0.027 0.026 0.026 0.026

2.0 0.031 0.028 0.027 0.026 0.026

3.0 0.032 0.028 0.027 0.026 0.026

FABIEN BRUNEVAL AND XAVIER GONZE PHYSICAL REVIEW B 78, 085125 �2008�

085125-4



a large momentum. For large transferred momenta, the cou-
pling between far apart states cannot be neglected without
damaging the polarizability.

The bottom panel of Fig. 2 shows how the extrapolar
correction to �0 proposed in Eq. �8� affects the sum rule for
a fixed number of 20 unoccupied bands with different values
of the extrapolar energy parameter. All calculations that in-
clude the correction fulfill the sum rule with a much higher
accuracy than the reference curve without correction. The
completeness correction is a large step towards a fulfillment
of the sum rule, especially for large transferred momenta. By
using the present correction, it is possible that for some val-
ues of �q+G�, the sum rule gets overestimated. This can al-
low one to compensate for the underestimation of the highest
values of �q+G�.

As a consequence, a sensible approach is to seek for the
value of the extrapolar energy 
̄�0

, which in average allows
for the best compliance to the sum rule. The significance of
each transferred momentum has to be weighted by its impor-
tance in the subsequent GW self-energy calculation since the
ultimate goal is merely to evaluate GW band structures. The
contribution of the polarizability �0 in the GW correlation is
proportional to ��−1−1�v. In order to have a rough estimate
of this weight, we can assume that all the matrices �0, �, and

�−1 are diagonal and are considered in the static limit �
→0 since this is the dominating contribution. Under these
assumptions, the weight w assigned to the sum rule for the
momentum �q+G� is

w�q + G� �
1

�q + G�2
�GG

−1 �q,� = 0� − 1� . �14�

When applying this procedure to �-SiC with 20 unoccupied
states �the same conditions as the bottom panel of Fig. 2�, the
best choice of the average energy appears to be �1.6 Ha
above the last explicitly calculated band. This is in good
agreement with the quality of the curve with the average
energy 
̄�0

chosen at 2.0 Ha above the last band in Fig. 1.

IV. SELF-ENERGY WITH A LIMITED NUMBER OF
EMPTY STATES

In the expression of the GW self-energy as in the formula
of the polarizability, a sum over all the states is present. In
the present section, using the same procedure as the one
shown previously for the polarizability, we propose a correc-
tion to the self-energy that allows us to reduce drastically the
number of empty states required.

For the sake of simplicity, we show the derivation of di-
agonal matrix elements, but the extension to the off-diagonal
terms needed in self-consistent GW �Refs. 18 and 19� is
straightforward. The exchange part of the GW self-energy is
the Fock exchange operator and therefore does not involve
empty states. The diagonal matrix element of the correlation
part of the GW self-energy expressed in a plane-wave basis
reads15

�kj��c��kj��kj� =
i

2�Nk�
� d�� �

i�Nb

�
qGG�

WGG��q,���

− �GG�v�q + G��

	
Mji�q + G�Mji

� �q + G��
�� − 
k−qi + 
kj � i�

, �15�

where � is a vanishing positive real. The sign in front of � is
plus when the state i is empty and minus otherwise.

The correction we propose is again to account for the
states i�Nb through an extrapolar energy 
̄�. This permits us
to interexchange the order of the sum over bands and all the
rest except the oscillator strengths in Eq. �15�. Then, we can
apply the closure relation written in Eq. �7�. Hence, the ex-
trapolar correction �kj to the self-energy reads

�kj =
i

2�Nk�
� d�� �

qGG�

WGG��q,��� − �GG�v�q + G�

�� − 
̄� + 
kj + i�

	 ��kj�ei�G�−G�.r�kj� − �
i�Nb

Mji�q + G�Mji
� �q + G��	 .

�16�

We now have to evaluate the frequency integral in the ex-
pression of the correction �kj. According to the polar struc-
ture of W���, which is a time-ordered quantity in the Green’s

0.5 1
0

π/2 ω
p

2

10 empty bands
20 empty bands
50 empty bands

100 empty bands
200 empty bands
550 empty bands

0 0.5 1
| q + G | [a.u.]

0

π/2 ω
p

2

no correction
correction: +0.5 Ha
correction: +1.0 Ha
correction: +2.0 Ha
correction: +3.0 Ha

FIG. 2. �Color online� Upper panel: Value of the integral in Eq.
�10� as a function of the transferred momentum �q+G� without any
correction using 10, 20, 50, 100, 200, and 550 empty bands in
�-SiC. Lower panel: Value of the integral in Eq. �10� as a function
of the transferred momentum �q+G� with 20 empty bands using no
correction or a correction with an average energy 
̄�0

of 0.5, 1.0,
2.0, and 3.0 Ha above the last explicitly calculated band in �-SiC.
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function theory, only the pole located in ��= 
̄�−
kj contrib-
utes to the integral by virtue of the residue theorem. The
corresponding residue invokes just the antiresonant part of
W�
̄�−
kj�, i.e., the part of W having poles in the upper part
of the complex plane. The energy difference 
̄�−
kj is large
in practice because 
kj is typically located in the vicinity of
the Fermi level and 
̄� will be a “high” energy �above the last
one explicitly treated in the calculation�. As a consequence,
the function W��� in the residue is evaluated only for large
values of �. It is a general result16 that the dielectric function
of an electron gas tends to a single plasmon pole in the limit
�→�.

Hence, in the calculation of the correction �kj, we will
assume that the dynamically screened Coulomb interaction is
well represented by a generalized plasmon-pole model15

even though the plasmon-pole model is not used to calculate
the self-energy itself. In other words, the plasmon-pole
model is much better justified for the correction �kj to the
self-energy than for the self-energy itself. The plasmon-pole
approximation models the dynamically screened Coulomb
interaction as

WGG��q,��� = �GG�v�q + G�

+
�GG�

2 �q�

2�̃GG��q�� 1

� − �̃GG��q� + i�	
	�−

1

� + �̃GG��q� − i�	v�q + G�� ,�17�

where �̃GG��q� and �GG�
2 �q� are parameters determined by

simple fits on the ab initio calculated dielectric matrices.
With this model for W���, the frequency integration in Eq.
�16� is performed analytically and yields the final expression
for the correction

�kj =
1

Nk�
�

qGG�

�GG�
2 �q�v�q + G�

2�̃GG��q��̃GG��q� + 
̄� − 
kj − i��

	 ��kj�ei�G�−G�.r�kj� − �
i=1

Nb

Mji�q + G�Mji
� �q + G��	 .

�18�

The first term of the correction �kj is almost costless since
it does not involve the sum over states. The second term can
be grouped with the usual evaluation of the GW self-energy
where all the ingredients to build it are freely available. Note
that usually the GW self-energy is calculated for several fre-
quencies since the self-energy is a dynamical operator. Yet
the correction can safely be assumed static because the en-
ergy 
kj is merely present inside the differences 
̄�−
kj,
which are large in all cases.

Here, we can compare our extrapolar-approximation-
based correction to the coulomb hole plus screened exchange
�COHSEX�-based correction of Tiago and Chelikowsky.9

The basic idea is similar—make the denominator indepen-
dent of the unoccupied state energy with index i—as in Eq.
�18� so that one can factorize the denominator out of the sum
and apply the closure relation. In Ref. 9, the authors chose to

neglect energy differences 
k−qi−
kj with respect to the plas-
mon frequencies �̃GG��q�. In doing so, the static screening
appears in the expression as in the COHSEX approximation
to the self-energy. This choice may not be optimal since,
when one wants to account for the high-energy bands, the
energy differences are typically large compared to the
plasma frequency of the system. Instead, the approximation
proposed here is to disregard the energy dispersion of the
high-energy bands and keep it fixed to an average value 
̄�.
In other words, our approximation assumes that the energy
dispersion of the empty states 
k−qi− 
̄� is small compared to
the difference �̃GG��q�+ 
̄�−
kj. This is much more realistic
in the typical applications and becomes even better when the
number of empty bands is increased.

In Fig. 3, we test the performance of the proposed correc-
tion in a convergence study of the matrix elements of the GW
correlation self-energy and of the band gap of �-SiC with
respect to the number of unoccupied states explicitly in-
cluded in the calculation. Consistently with the convergence
study on the number of empty states used in �0, the conver-
gence of the results without correction is very slow. In order
to achieve the typical accuracy of a GW-band structure
��50 meV�, 100 to 200 unoccupied bands are required.
Note that, as usual, the band gap converges faster than the
absolute positions of the GW energies. When the correction
is turned on, the convergence becomes much smoother and
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FIG. 3. �Color online� Convergence study of the correlation self-
energy at top valence �upper panel� and at bottom conduction
�middle panel� and of the band gap �lower panel� of �-SiC as a
function of the number of unoccupied states explicitly included in
the calculation of the self-energy.
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the value of the correction does not depend strongly on the
chosen average energy 
̄�. Only 20 bands are necessary to
converge the band gap within 50-meV, whereas 50 bands are
needed to converge the absolute position of the top valence
band named 15v.

The evaluation of the optimum average energy 
̄� for the
extrapolar approximation cannot be based on an exact
scheme since no sum rule exists for the self-energy. Fortu-
nately, a direct analogy between �0 and � can be
underlined—they both contain a truncated sum over empty
states and the summand is for both the squared modulus of
the oscillator strengths divided by an energy difference. Yet,
the denominator in � differs from the one of �0 by the pres-
ence of the plasmon-pole frequencies �̃GG��q�. In average,
these frequencies �̃GG��q� lie closely to the classical plasma
frequency of the system. Considering that in the practical
case the plasma frequency is small compared to the energy
differences, we can expand the denominator as a function of
the small quantity �̃GG��q� / �
k−qi−
kj�. The leading term in
this expansion of the denominator does not involve the quan-
tity �̃GG��q�;

1


k−qi − 
kj + �̃GG��q�
�

1


k−qi − 
kj
�1 −

�̃GG��q�


k−qi − 
kj
	 .

�19�

This shows that the determination of the extrapolar energy
for the self-energy 
̄� is to the zeroth order—the same as the
determination of the extrapolar energy for the polarizability


̄� � 
̄�0
. �20�

In the case of �-SiC with 20 unoccupied states, the evalua-
tion of 
̄�0

gave 1.6 Ha above the last band energy. This
value would be also suitable for 
̄� as can be judged from
Fig. 3.

V. APPLICABILITY

In order to show that the present scheme possesses a wide
range of applications, we further carried out calculations for
a supercell of bulk �-SiC and for two other very different
systems: a wide band-gap insulator, solid argon and a ben-
zene �C6H6� molecule in gas phase.

In Fig. 4, we examine the convergence with the number of
unoccupied states explicitly included in the calculation for a
64-atom �-SiC supercell. The tendencies observed for the
small unit cell here are even more pronounced. We could not
achieve convergence within 50 meV of the uncorrected GW
band gap even using almost 1400 empty states. In contrast,
applying the proposed correction with the optimal extrapolar
energy as evaluated according to the sum rule Eq. �10� al-
lows us to have an accurate evaluation of the GW band gap
with as few as 320 unoccupied states. By extrapolation, we
can evaluate that the uncorrected GW would require about
3000 empty bands to achieve the same convergence.

As previously noticed,19 the GW band gap of argon is
much smaller than the experimental value �14.2 eV�. How-
ever, this is not the point here. Figure 5 shows the conver-

gence of the top valence, bottom conduction correlation self-
energy, and band gap of this insulator. Once again, the
extrapolar approximation performs extremely well even bet-
ter than in the case of silicon carbide; the number of empty
states can be reduced from 200 to 20.

The calculation of finite systems with periodic boundary-
condition code should be considered with care, especially for
the GW framework, which has long-range interactions. To
mimic an isolated benzene molecule, we use a 40-bohr-long
box in face-centered cubic geometry. In addition, the Cou-
lomb interaction has been suppressed beyond 20 bohr.20,21 As
the stress is placed on the convergence behavior and not on
the system properties, we applied the usual perturbative pro-
cedure for the GW evaluation. But we know that this is not
sufficient as shown by Tiago and Cheliskowsky.9 The con-
vergence is displayed in Fig. 6. Without the extrapolar ap-
proximation, it would not have been possible to produce a
reliable result even considering 1000 empty states. By con-
trast, we are able to obtain an evaluation of the highest oc-
cupied molecular orbital �HOMO�-lowest unoccupied mo-
lecular orbital �LUMO� gap with only 200 bands and an
absolute energy position of the HOMO and the LUMO with
500 bands.
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FIG. 4. �Color online� Convergence study of the correlation self-
energy at top valence �upper panel� and at bottom conduction
�middle panel� and of the band gap �lower panel� of �-SiC in a
64-atom cubic supercell as a function of the number of unoccupied
states explicitly included in the calculation of the polarizability and
in the self-energy.
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VI. CONCLUSION

The number of empty states to be used in present imple-
mentations of the GW approximation with a plane-wave ba-
sis hinders the use of the method for large-scale applications.
We have provided here a technique based on the closure
relation and the adequate approximation for the eigenener-
gies of states not treated explicitly largely reduces the pref-
actor in CPU time and in memory needs. This technique is a
generalization of the extrapolar approximation of Ref. 14 and
is similar to CEDA developed in the framework of optimized
effective potential method by Gritsenko and Baerends.13 The
gain is already large for bulk cells and it will allow one to
consider applications to systems that were previously out of
reach of the GW method.

We have emphasized that the completeness in the Hilbert
space is critical in order to have full convergence of the GW
band structure. A critical tool to measure this completeness is
the fulfillment of the sum rule in Eq. �10�. Using this rela-

tion, we have been able to estimate the correct range for the
energy parameter to be introduced in the extrapolar approxi-
mation. With this determination, the proposed scheme can be
considered as ab initio.

One immediate application of the presented acceleration
technique is the GW evaluation of band alignment in junc-
tions, which requires the absolute positions of the GW en-
ergy levels.22
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FIG. 5. �Color online� Convergence study of the correlation self-
energy at top valence �upper panel� and bottom conduction �middle
panel� and of the band gap �lower panel� of solid argon as a func-
tion of the number of unoccupied states explicitly included in the
calculation of the polarizability and in the self-energy.
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FIG. 6. �Color online� Convergence study of the correlation self-
energy at HOMO �upper panel� and at LUMO �middle panel� and of
the band gap �lower panel� of the benzene molecule �C6H6� as a
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