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Efficient Approach to Time-Dependent Density-Functional Perturbation Theory
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Using a superoperator formulation of linearized time-dependent density-functional theory, the dynami-
cal polarizability of a system of interacting electrons is represented by a matrix continued fraction whose
coefficients can be obtained from the nonsymmetric block-Lanczos method. The resulting algorithm,
which is particularly convenient when large basis sets are used, allows for the calculation of the full
spectrum of a system with a computational workload only a few times larger than needed for static
polarizabilities within time-independent density-functional perturbation theory. The method is demon-
strated with calculation of the spectrum of benzene, and prospects for its application to the large-scale
calculation of optical spectra are discussed.
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The past two decades have witnessed the tremendous
success of density-functional theory (DFT) [1] in describ-
ing and predicting various properties of systems of inter-
acting electrons, from atoms and molecules to solids and
liquids. In its original formulation, DFT only applies to the
electronic ground state. This limitation was lifted by Runge
and Gross (RG) [2] who generalized DFT to time-
dependent (TD) systems. According to the RG theorem,
for any given initial state of a many-electron system, the
TD potential acting on it is uniquely determined by the
subsequent time evolution of the one-electron density.
Using this theorem, it is possible to formally establish a
TD Kohn-Sham (KS) equation from which various one-
particle properties of the system can be obtained as func-
tions of time. The resulting theoretical framework is usu-
ally referred to as time-dependent density-functional
theory (TDDFT). Most existing applications of TDDFT
are based on the adiabatic exchange-correlation (XC)
approximation (AXCA), which amounts to using the
same functional dependence of the XC potential upon
density as in the static case. Despite the crudeness of this
approximation, optical spectra calculated from it are in
some cases almost as accurate as those from more compu-
tationally demanding approaches based on many-body
perturbation theory (MBPT) [3].

By linearizing the KS equations with respect to a time-
dependent perturbation, TDDFT can be formulated in
terms of a Dyson equation for the system’s response func-
tions. This approach allows for a straightforward concep-
tual juxtaposition of TDDFT and MBPT [3], as well as for
a deep insight into the nature of the TDDFT XC kernel [4].
Computationally much lighter than MBPT, this approach
still requires the manipulation (inversion, multiplication)
of large matrices, which is hard to accomplish for large
systems or basis sets. Also, many unoccupied eigenstates
of the unperturbed KS Hamiltonian need to be calculated, a
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task which again may become critical for large systems or
basis sets, as it is easily the case with plane waves (PW’s)
or real-space grids. The poles of the response functions and
their residues are excitation energies and oscillator
strengths, respectively. The latter can also be obtained
from the eigenvalues and eigenvectors of an appropriate
non-Hermitian eigenvalue problem [5]. This problem has
the same structure as in the TD Hartree-Fock theory [6],
and the dimension of the resulting matrix (the Liouvillian)
is twice the product of the number of occupied states with
the number of unoccupied states. The calculation of a few
eigenstates of such a large matrix can be accomplished
using iterative techniques [7], possibly in conjunction with
the Tamm-Dancoff approximation (TDA), which amounts
to enforcing Hermiticity by neglecting the anti-Hermitian
component of the Liouvillian [8]. Many existing molecular
applications of TDDFT have been performed within such a
framework which is probably near to optimal when a small
number of excited states is required. In a large system,
however, the number of quantum states in any given energy
range grows with the system size. The number of pseudo-
discrete states in the continuum grows with the basis-set
size even in a small system. For these reasons, a method to
model the absorption spectrum directly, without calculat-
ing individual excited states, would thus be highly desir-
able. Yabana and Bertsch proposed such an alternative
approach where the TD-KS equations are solved in the
time domain, and susceptibilities obtained by Fourier ana-
lyzing the linear response of the system to appropriate
perturbations [9]. This scheme has the same numerical
complexity as ground-state DFT iterative methods, and it
also gives easy access to nonlinear optical properties.
Because of this, real-time methods have recently gained
popularity in conjunction with the use of real-space grids
[10]. The main limitation is here that stable integration of
the TD-KS equations requires a time step as small as
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�10�3 fs in typical pseudopotential (PP) applications,
which decreases as the number of grid points or PW’s
increases.

In this Letter we propose a novel way to calculate optical
spectra in the frequency domain—thus avoiding any ex-
plicit integration of the TD-KS equations—which does not
require the calculation of any unoccupied KS states, any
time-consuming matrix operations, nor the calculation of
individual eigenstates of the TDDFT Liouvillian. We ex-
press a generalized susceptibility as an off-diagonal matrix
element of the resolvent of the Liouvillian superoperator,
which is evaluated using a Lanczos continued fraction
technique. The resulting numerical complexity is of the
same order as that of time-independent density-functional
perturbation theory [11].

Our formalism starts from Casida’s linear-response for-
mulation of TDDFT [5]. A system, characterized in its
ground state by the KS Hamiltonian Ĥo

KS, orbitals ’o
v�r�,

and orbital energies �v, is subject to an external perturba-
tion whose Fourier transform is ��!� ~V0ext�r; !�, where
��!� conventionally indicates its strength. The solutions
of the TD-KS equation corresponding to the initial con-
ditions ’v�r; 0� � ’o

v�r� are indicated by ’v�r; t�, and
the corresponding response orbitals by ’0v�r; t� �
�ei�vt’v�r; t� � ’o

v�r��, with Fourier transforms: ’�v �r� �
~’0v�r; !�, and ’�v �r� � ~’0	v �r;�!�. The ’
v orbitals can be
chosen to be orthogonal to the KS occupied manifold. If we
define xv�r� � 1

2 �’
�
v �r� � ’�v �r�� and yv�r� � 1

2 �’
�
v �r� �

’�v �r��, then the linearized equation of motion can be
written in the form [5]:

�!�L�jx; yi � j0; vi; (1)

where the ket indicates a supervector consisting of an
ordered pair of batches of orbitals, x � fxv�r�g and
y � fyv�r�g, and the batch v is defined as v �
fP̂c ~V0ext�r; !�’o

v�r�g, P̂c being the projector onto the KS
unoccupied manifold. The Liouvillian superoperator L is
defined as Ljx; yi � jD � y; �D�K� � xi, where D and
K are Hermitian operators acting on batches of orbitals,
u � fuv�r�g, as D � u � f�Ĥo

KS � �v�uv�r�g and K � u �
f’o

v�r�
P
v0
R
��r; r0�’o

v0 �r
0�uv0 �r0�dr0g, ��r; r0� being the

Hartree plus XC kernel. Equation (1) gives the response
of the system to the external perturbation as a function of
frequency. When V0ext � 0, this equation reduces to a (non-
Hermitian) eigenvalue problem whose normal modes de-
scribe the free oscillations of the system corresponding to
electronic excitations [5].

In practice, one is seldom interested in the response of
the system to the most general perturbation, or in individ-
ual excitation energies, but just in the frequency-dependent
response of some specific property to some specific pertur-
bation. Let us consider an observable, Â, whose TD linear
response is given by A�t� � 2 Re

P
vh’

o
vjÂj’0v�t�i. Assum-

ing that Â is time-reversal invariant, the Fourier trans-
form of A�t� is ~A�!� �

P
v�h’

o
vjÂj’�v i � h’o

vjÂj’�v i� �
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2��!�ha; 0jx; yi, where a � fÂ’o
vg. A generalized suscep-

tibility, �AV�!�, can be defined ~A�!�=��!�:

�AV�!� � 2ha; 0j�!�L��1j0; vi: (2)

Equation (2) states that within TDDFT any susceptibility
can be expressed as an appropriate off-diagonal matrix
element of the resolvent of the Liouvillian superoperator.
We now show how such a matrix element can be conven-
iently calculated using the non-Hermitian block-Lanczos
algorithm (NHBLA) [12].

We define a block, jQi, as a pair of orthogonal super-
vectors: jQi � fjQ1i; jQ2ig. The scalar product between
two blocks, s � hPjQi is defined as the 2 2 matrix: sij �
hPijQji, and the action of a superoperator on a block is
defined as the block whose elements are the result of the
action of the superoperator on each supervector of the
original block: LjfQ1; Q2gi � jfLQ1;LQ2gi. Given two
starting blocks, jQ1i and jP1i such that hP1

i jQ
1
j i � �ij, the

NHBLA generates a sequence of block pairs, fjQni; jPnig,
such that: hPni jQ

m
j i � �mn�ij, and L �

P
nm;ijT

mn
ij jQ

m
i i

hPnj j, where Tnmij �hP
n
i jLjQ

m
j i�a

n
ij�mn�b

n
ij�m�1;n�

cmij�m;n�1 is a block-tridiagonal matrix. The matrix element
of the resolvent of the Liouvillian between the two ele-
ments of the starting block can then be easily expressed as
a matrix continued fraction:

hP1j�!�L��1jQ1i�
1

!�a1�b2
1

!�a2����
c2

; (3)

where the a’s, b’s, and c’s are 22 matrices. If the starting
blocks are chosen as jP1i � jQ1i � fja; 0i; j0; vig, the gen-
eralized susceptibility, Eq. (2), is then the (1,2) matrix
element of the 2 2 matrix in Eq. (3). Without going
into the details of the NHBLA, suffice it to say that its
implementation does not require the explicit calculation of
the Liouvillian superoperator, nor even of the unperturbed
KS Hamiltonian, but just the availability of a black-box
computer routine which, for any given batch of orbitals,
u � fuv�r�g, returns Djui and Kjui. Each step of the
NHBLA essentially involves two calls to such a routine,
whose computational cost is roughly that of a single itera-
tion in a static DFPT calculation. If the XC kernel is
frequency independent, as is the case in the AXCA, the
block-tridiagonal representation of L is independent of
frequency, and one single Lanczos chain allows for the
calculation of the spectrum at all frequencies via Eq. (3).
When the frequency dependence of the XC kernel is ex-
plicitly accounted for, the situation is not as simple, but it is
possible that linearization of the kernel within selected
frequency windows will result in a manageable scheme
based on a single Lanczos chain per window. We finally
notice that this method would also apply in the presence of
nonlocal kernels—such as those occurring with hybrid
functionals—once the action of the exchange operator
1-2



PRL 96, 113001 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
24 MARCH 2006
onto a molecular orbital is properly implemented for
ground-state calculations.

To demonstrate our methodology, we calculate the ab-
sorption spectrum of benzene, a system for which many
excited-state calculations already exist [13,14], some of
which were performed within TDDFT [14]. Computational
details are given in Ref. [15]. The convergence properties
of our algorithm are displayed in Fig. 1, which reports the
absorption spectrum of benzene for light polarized in the
xy plane. We see that 2000–3000 steps are sufficient to
ensure convergence for energies up to � 15 eV. A direct
comparison of the efficiency of approaches aimed at cal-
culating individual eigenstates is basically impossible,
whereas such a comparison is more meaningful with
time-propagation methods. Our most well-converged spec-
trum is compared in the inset with that obtained from real-
time propagation. The agreement is practically perfect.
The number of time steps required to calculate the spec-
trum reported in the inset is 12 700, which is typical of this
type of calculation. Each time step requires several
Hamiltonian-wavefunction (H ) products, depending on
the propagation scheme used [16]. In the present approach,
each Lanczos step requires two H multiplications.
Obtaining a converged spectrum is therefore numerically
considerably less demanding than using a real-time propa-
gation. Although a thorough theoretical analysis of the
convergence properties of our algorithm is beyond the
scope of this Letter, we point out a few facts that we believe
will deserve further attention. Firstly the convergence
properties deteriorate—not unexpectedly—with increas-
ing frequency: the lower the frequency, the better the
convergence. Secondly, the convergence rate of the algo-
rithm is somewhat affected by the condition number of the
Liouvillian, which depends on the size of the PW basis set:
the higher the PW kinetic-energy cutoff, the poorer the
convergence [17]. Furthermore, the numerical instabilities
which are known to plague Lanczos diagonalization algo-
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FIG. 1 (color). Absorption spectrum of benzene calculated
using the Lanczos method with different numbers of recursion
steps: 1000 (plum), 2000 (red), 3000 (green), and 6000 (black).
The inset compares the 6000-step spectrum (black) with that
obtained using the real-time propagation method (orange).
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rithms [12] seem to have little, if any, effect on the calcu-
lation of the resolvent matrix elements through Eq. (3). As
far as we can say, Eq. (3) can be pushed as far as needed to
reach any desired level of accuracy. Finally, the non-
Hermitian character of the Liouvillian reduces the effi-
ciency of the algorithm, as can be seen from the perform-
ance of the TDA that we examine now. In Fig. 2 we
compare the experimental absorption spectrum [18] with
those obtained with our TDDFT method, with and without
the TDA. Use of the TDA does not change much the
overall appearance of the spectrum. The main differences
are seen in the intensities and in a slight blue shift of the
peaks that, when using the TDA, would therefore enhance
a similar effect due the inability of most of the current
energy functionals to properly account for the electron-
hole attraction. The convergence of TDA calculations is
much faster than when using the full non-Hermitian form
of the Liouvillian (see the inset of Fig. 2).

The agreement between the calculated and experimental
spectra is very good, as known from previous TDDFT
calculations for benzene [14]. The quality of this agree-
ment is to some extent due to the nature of the molecular
orbitals involved in the transitions dominating the low-
lying part of the spectrum (�, �	, and to a lesser extent,
�), which are little affected by the incorrect asymptotic
behavior of the local-density AXCA potential. The absorp-
tion spectra shown in Fig. 2, though resulting from an
average over different polarizations, are dominated by
the ��	  ��1E1u transition which is only allowed when
the light is polarized in the plane of the molecule. This
transition is mainly responsible for the first strong absorp-
tion peak found experimentally at 6.94 eV, and predicted
by TDDFT at 6.83 eV. Interestingly, the z component of the
spectrum displays a weak peak at 6.55 eV, which is not
visible in Fig. 2 (its intensity being less that one tenth that
of the xy peak), corresponding to a ��	  ��1A2u transi-
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FIG. 2 (color). Comparison between the converged Lanczos
spectrum obtained with the full non-Hermitian Liou-
villian (black), the Tamm-Dancoff approximation (purple), and
the experimental results (cyan). The inset shows the convergence
of the TDA spectrum with respect to the number of recursion
steps: 250 (blue), 500 (red), 1000 (magenta), and 2000 (green).

1-3



PRL 96, 113001 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
24 MARCH 2006
tion. In the independent-electron approximation, this tran-
sition would have a higher energy than 1E1u, which corre-
sponds to the highest-occupied-molecular-orbital–lowest-
unoccupied-molecular-orbital gap. The red shift of the
1A2u transition is therefore due to the effects of the
electron-electron interaction which are approximately ac-
counted for in AXCA-TDDFT. The 1A2u transition has
never been detected directly in absorption experiments,
but its existence (as well as its location near, possibly at a
lower frequency than, the strong 1E1u transition) was in-
ferred from Raman scattering experiments [19]. The prox-
imity of the 1E1u and 1A2u, and the much lower intensity of
the latter, were also confirmed by accurate coupled-cluster
calculations [13(d)]. It is possible that the little shoulder
observed at 6.19 eV in the absorption spectrum [18] and
attributed to a vibron-assisted 1B1u forbidden excitation, is
actually due to a weak 1A2u allowed transition.

We believe that the method presented in this Letter,
while not touching on our serious ignorance on the form
of TD XC functionals, will open the way to the study of
systems which are too large to be treated at present. The
scaling with system or basis-set size of a single iteration is
basically the same as in ground-state methods, such as
energy minimization or ab initio molecular dynamics.
The size dependence of the number of required iterations
is an issue which will only be settled by extensive experi-
mentation. These already rather favorable numerical fea-
tures will be further improved by the use of ultrasoft PP’s
(allowing for the reduction of both the size of one-electron
basis sets and the condition number of the Liouvillian), and
by devising optimal strategies for restarting the Lanczos
chain using approximate schemes. Work is in progress
along these lines.
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