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It is shown how the energy denominators encountered in various schemes for electronic structure calculation can be removed 
by a Laplace transform technique. The method is applicable to a wide variety ofelectronic structure calculations. 

Recent development of direct methods for elec- 
tronic structure calculations [l-4] has allowed the 
application of rigorous ab initio theory to molecules 
of a size which was unthinkable only a few years ago. 
SCF calculations are now possible on systems with 
nearly 2000 basis functions [ 5,6], and even at the 
correlated level, very large basis sets are routinely 
being used. [ 71 The bottleneck in these correlated 
calculations is usually the storage and manipulation 
of integrals in an MO basis, rather than the CPU 
time. Especially in extended systems, the informa- 
tion contained in these integrals could be substan- 
tially compressed if the orbitals were localized, with 
a resulting saving in the storage requirement. Lo- 
calization of orbitals may also be advantageous from 
other points of view, e.g. for reducing basis set su- 
perposition errors [S]. However, many schemes for 
electron correlation place restrictions on such orbital 
localization, and a deviation from canonical orbitals 
often requires the use of iterative schemes [8-lo]. 

We suggest here an elementary but useful treat- 
ment based on a Laplace transform, which is appli- 
cable to a wide variety of electronic structure cal- 
culations whenever energy denominators are 
encountered. Second-order perturbation theory may 
suffice as one simple illustration of the technique: 

In a spin-orbital formalism, the second-order cor- 
rection to the electronic energy can be written as 

(1) 

(3) 

where (abllij)=(ablij)-(ablji),and 

(ablii)=5~~(1)Wh(2)~~,(l)yli(2)d\-,~~ 

(spin integration) . (2) 

As usual, i, j, . . in ( I ) denote occupied MOs, and a, 
6, . the virtuals. By introducing a Laplace transform 
for the denominator in ( I ), 

(&,+&h-E,-&,)-’ 

= exp[-(s,+ch-a,-c,)t]dt, 
s 
0 

one obtains 

cc 

E”‘=-i dt,zb (abl lij)’ 
s 
0 

X exp[-(&,+cD--E,-e,)t] (4) 

The t-dependence of the integrand can now be trans- 
ferred to the orbitals, 

y/,(t)=y/,(0) exp(fN 

for the occupied orbitals (and zero for virtuals) , 
(5a) 

va(t)=v,(O! exp(-fht) 

for the virtuals (zero for occupied) , (5b) 
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after which the correlation energy takes the form 

co 

(6) 

where 

f’Y0=-: ,,~~,ca(l)b(t)lli(r)i(I)>Z. (7) 

The significance of the above lies in the fact that a 
canonical representation is no longer required when 
the sum over pairs in (7) is carried out. Due to the 
generalized definition of the orbitals, the summa- 
tions need not be restricted to any particular sub- 
spaces. This leaves some additional flexibility in de- 
fining different types of orbital rotations for 
computational convenience. One may, for instance, 
define rotations of the orbital spaces by means of 
various unitary matrices, 

(8a) 

I%, 

@1= ; wiu,, / (8b) 

where the matrices U for the transformations of the 
indices are unitary. This trivially leads to 

p0)= _I 4 ,Z/, ; CabI Ifi> (l’jl Iab)C:,U,,, 

(9) 

and similarly for transformation of the other indices. 
There exist several important classes of unitary ro- 
tations of the orbital space for which (7) is invar- 
iant. These include separate orbital rotations applied 
to the four indices i;j;a;b, different rotations for dif- 
ferent t values, etc. Note that the set of v/(t) are not 
normalized; therefore, even a “unitary” (n’,,,xN,,,) 
rotation in the occupied space leaves the @ non-or- 
thogonal. However, U does not need to have an oc- 
cupied-virtual blocked structure. Any unitary U 
would suffice, which opens the possibility for using 
non-orthogonal orbitals within the current scheme. 

Schemes employing localized or non-orthogonal 
orbltals can, therefore, readily be implemented. This 
is especially attractive in very large systems where 
one cannot store even the transformed integrals 
(ijl 1 ab) in a canonical basis. Localization signiti- 
cantly increases the sparsity of the transformed in- 
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tegrals, thereby reducing the storage requirement. 
Non-orthogonality is important in this context in or- 
der to remove the localization tails. 

The integral in (6) must be evaluated numeri- 
cally. This is not a major obstacle, however. since 
f”)(t) is a quite well-behaved, monotonically de- 
creasing function. With logarithmically spaced 
quadrature points, no more than lo- 15 points are 
required to obtain accuracy at the micro-hartree level. 
Especially with localized orbitals in extended sys- 
tems, the price paid for the repeated evaluation of 
p(2) (t) at different values oft is often more than off- 
set by the much smaller “effective” orbital spaces 
needed in a localized picture. 

To summarize, it is shown how the energy denom- 
inators in perturbation theory, which preclude lo- 
calization and other types of orbital rotations, can be 
replaced by a numerical integration over an auxiliary 
variable. The rotations made possible by such a tech- 
nique are not restricted to simple unitary rotations 
within the occupied orbital space. Second-order per- 
turbation theory is chosen as a simple example to il- 
lustrate the technique. The approach is quite gen- 
eral, however, and can be applied to higher orders of 
perturbation theory as well as to other types of cor- 
relation treatment where energy denominators occur. 
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