fig gaps
This commit is contained in:
parent
b8e7e85205
commit
cfad301b50
@ -89,7 +89,7 @@
|
|||||||
\newcommand{\EA}{A}
|
\newcommand{\EA}{A}
|
||||||
\newcommand{\HOMO}{\text{HOMO}}
|
\newcommand{\HOMO}{\text{HOMO}}
|
||||||
\newcommand{\LUMO}{\text{LUMO}}
|
\newcommand{\LUMO}{\text{LUMO}}
|
||||||
\newcommand{\Eg}{E_\text{gap}}
|
\newcommand{\Eg}{E_\text{g}}
|
||||||
\newcommand{\EgFun}{\Eg^\text{fund}}
|
\newcommand{\EgFun}{\Eg^\text{fund}}
|
||||||
\newcommand{\EgOpt}{\Eg^\text{opt}}
|
\newcommand{\EgOpt}{\Eg^\text{opt}}
|
||||||
\newcommand{\EB}{E_B}
|
\newcommand{\EB}{E_B}
|
||||||
@ -247,9 +247,16 @@ An important conclusion drawn from these calculations was that the quality of th
|
|||||||
\end{equation}
|
\end{equation}
|
||||||
with the experimental (photoemission) fundamental gap \cite{Bredas_2014}
|
with the experimental (photoemission) fundamental gap \cite{Bredas_2014}
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\EgFun = I - A,
|
\EgFun = I^N - A^N,
|
||||||
\end{equation}
|
\end{equation}
|
||||||
where $I = E_0^{N-1} - E_0^N$ and $A = E_0^{N+1} - E_0^N$ are the ionization potential and the electron affinity of the $N$-electron system, $E_s^{N}$ is the total energy of the $s$th excited state of the $N$-electron system, and $E_0^N$ corresponds to the $N$-electron ground-state energy.
|
where $I^N = E_0^{N-1} - E_0^N$ and $A^N = E_0^{N+1} - E_0^N$ are the ionization potential and the electron affinity of the $N$-electron system, $E_s^{N}$ is the total energy of the $s$th excited state of the $N$-electron system, and $E_0^N$ corresponds to the $N$-electron ground-state energy (see Fig.~\ref{fig:gaps}).
|
||||||
|
|
||||||
|
\begin{figure*}
|
||||||
|
\includegraphics[width=0.7\linewidth]{gaps}
|
||||||
|
\caption{
|
||||||
|
Optical and fundamental gaps.
|
||||||
|
\label{fig:gaps}}
|
||||||
|
\end{figure*}
|
||||||
|
|
||||||
Standard $G_0W_0$ calculations starting with Kohn-Sham (KS) eigenstates generated with (semi)local functionals yield much larger HOMO-LUMO gaps than the input KS gap
|
Standard $G_0W_0$ calculations starting with Kohn-Sham (KS) eigenstates generated with (semi)local functionals yield much larger HOMO-LUMO gaps than the input KS gap
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
|
BIN
Manuscript/gaps.png
Normal file
BIN
Manuscript/gaps.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 205 KiB |
Loading…
Reference in New Issue
Block a user