mirror of https://gitlab.com/scemama/resultsFile.git synced 2024-06-18 19:25:25 +02:00


This commit is contained in:
Anthony Scemama 2015-01-19 15:32:50 +01:00
parent d8a6b9f82a
commit fd24d147cb
4 changed files with 138 additions and 1661 deletions

View File

@ -1,7 +0,0 @@
- rm -rf build dist
- export VERSION=$(VERSION) ;\
./setup.py --quiet bdist_rpm
- sudo rpm -e resultsFile
- sudo rpm -hiv dist/resultsFile*.noarch.rpm

View File

@ -1,2 +1,140 @@
# resultsFile
Python interface to read output files of quantum chemistry programs
To add a module to read a new kind of output file, just add a file
in the `Modules` directory.
# Using the library
Example (`resultsFile` is supposed to be in your `sys.path`):
``` Python
import resultsFile
file = resultsFile.getFile("g09_output.log")
print 'recognized as', str(file).split('.')[-1].split()[0]
print file.mo_sets
## Constraints
### Gaussian09
* `GFPRINT` : Needed to read the AO basis set
* `pop=Full` : Needed to read all the MOs
* `#p CAS(SlaterDet)` : CAS-SCI CI coefficients
When doing a CAS with Gaussian, first do the Hartree-Fock calculation saving the checkpoint
file and then do the CAS in a second calculation.
### Molpro
* `print, basis;` : Needed to read the AO basis set
* `gprint,orbital;` : Needed to read the MOs
* `gprint,civector; gthresh,printci=0.;` : Needed to read the CI coefficients
* `orbprint` : Ensures all the MOs are printed
An RHF calculation is mandatory before any MCSCF calculation, since some
information is printed only the RHF section. Be sure to print *all* molecular
orbitals using the `orbprint` keyword, and to use the same spin multiplicity
and charge between the RHF and the CAS.
For MCSCF calculations, first compute the MCSCF single-point wave function with
the GUGA algorithm. Then, put the the MCSCF orbitals (of the `.dat` file) in
the GAMESS input file, and run a single-point GUGA CI calculation with the
following keywords:
* `PRTTOL=0.0001` in the `$GUGDIA` group to use a threshold of 1.E-4 on the CI coefficients
* `NPRT=2` in the `$CIDRT` group to print the CSF expansions in terms of Slater determinants
* `PRTMO=.T.` in the `$GUESS` group to print the molecular orbitals
# Debugging
Any module can be run as an stand-alone executable. For example:
$ resultsFile/Modules/gamessFile.py
resultsFile version 1.0, Copyright (C) 2007 Anthony SCEMAMA
resultsFile comes with ABSOLUTELY NO WARRANTY; for details see the
gpl-license file.
This is free software, and you are welcome to redistribute it
under certain conditions; for details see the gpl-license file.
resultsFile/Modules/gamessFile.py [options] file
--date : When the calculation was performed.
--version : Version of the code generating the file.
--machine : Machine where the calculation was run.
--memory : Requested memory for the calculation.
--disk : Requested disk space for the calculation.
--cpu_time : CPU time.
--author : Who ran the calculation.
--title : Title of the run.
--units : Units for the geometry (au or angstroms).
--methods : List of calculation methods.
--options : Options given in the input file.
--spin_restrict : Open-shell or closed-shell calculations.
--conv_threshs : List of convergence thresholds.
--energies : List of energies.
--one_e_energies : List of one electron energies.
--two_e_energies : List of two electron energies.
--ee_pot_energies : List of electron-electron potential energies.
--Ne_pot_energies : List of nucleus-electron potential energies.
--pot_energies : List of potential energies.
--kin_energies : List of kinetic energies.
--virials : Virial ratios.
--point_group : Symmetry used.
--num_elec : Number of electrons.
--charge : Charge of the system.
--multiplicity : Spin multiplicity of the system.
--nuclear_energy : Repulsion of the nuclei.
--dipole : Dipole moment
--geometry : Atom types and coordinates.
--basis : Basis set definition
--mo_sets : List of molecular orbitals
--mo_types : Types of molecular orbitals (canonical, natural,...)
--mulliken_mo : Mulliken atomic population in each MO.
--mulliken_ao : Mulliken atomic population in each AO.
--mulliken_atom : Mulliken atomic population.
--lowdin_ao : Lowdin atomic population in each AO.
--mulliken_atom : Mulliken atomic population.
--lowdin_atom : Lowdin atomic population.
--two_e_int_ao : Two electron integrals in AO basis
--determinants : List of Determinants
--num_alpha : Number of Alpha electrons.
--num_beta : Number of Beta electrons.
--closed_mos : Closed shell molecular orbitals
--active_mos : Active molecular orbitals
--virtual_mos : Virtual molecular orbitals
--determinants_mo_type : MO type of the determinants
--det_coefficients : Coefficients of the determinants
--csf_mo_type : MO type of the determinants
--csf_coefficients : Coefficients of the CSFs
--symmetries : Irreducible representations
--occ_num : Occupation numbers
--csf : List of Configuration State Functions
--num_states : Number of electronic states
--two_e_int_ao_filename :
--one_e_int_ao_filename :
--atom_to_ao_range :
--gradient_energy : Gradient of the Energy wrt nucl coord.
--text :
--uncontracted_basis :
--uncontracted_mo_sets :

File diff suppressed because it is too large Load Diff

View File

@ -1,297 +0,0 @@
# resultsFile is a library which allows to read output files of quantum
# chemistry codes and write input files.
# Copyright (C) 2007 Anthony SCEMAMA
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
# Anthony Scemama
# Universite Paul Sabatier
# 118, route de Narbonne
# 31062 Toulouse Cedex 4
# scemama@irsamc.ups-tlse.fr
import include
import struct
import re
import os
QMCCHEM_PATH = os.getenv("QMCCHEM_PATH",default="")
if QMCCHEM_PATH == "":
print "QmcChem new files are not handled."
class qmcchem_newFile(resultsFile):
sys.path = [ QMCCHEM_PATH+"/scripts" ]+sys.path
from ezfio import ezfio
qmcchem_newFile_defined_vars = [ "date", "version", \
"title", "units", "methods", \
"point_group", "num_elec", \
"charge", "multiplicity","geometry",\
"determinants", "num_alpha", "num_beta",\
"closed_mos", "active_mos", "virtual_mos", \
"determinants_mo_type", "det_coefficients", \
"csf_mo_type", "csf_coefficients", "occ_num", \
"csf" ]
class qmcchem_newFile(resultsFile):
""" Class defining the qmcchem_new file.
local_vars = list(local_vars)
defined_vars = list(qmcchem_newFile_defined_vars)
def __init__(self,name):
def get_version(self):
if self._version is None:
self._version = ezfio.get_version()
return self._version
def get_date(self):
if self._date is None:
self._date = ezfio.get_ezfio_creation()
return self._date
def get_num_elec(self):
if self._num_elec is None:
self._num_elec = self.num_alpha + self.num_beta
return self._num_elec
def get_multiplicity(self):
if self._multiplicity is None:
self._multiplicity = self.num_alpha - self.num_beta + 1
return self._multiplicity
def get_charge(self):
if self._charge is None:
self._charge = sum(ezfio.get_nuclei_nucl_charge())-float(self.num_elec)
return self._charge
def get_title(self):
if self._title is None:
self._title = self.filename
return self._title
def get_units(self):
if self._units is None:
self._units = 'BOHR'
#for a gamess use the units is give by an option on gamess_write_contrl
return self._units
def get_methods(self):
if self._methods is None:
self._methods = ['QMC']
return self._methods
def get_point_group(self):
if self._point_group is None:
self._point_group = "C1"
return self._point_group
def get_geometry(self):
if self._geometry is None:
return self._geometry
def get_basis(self):
if self._basis is None:
return self._basis
def get_geometryX(self):
self._geometry = []
charge = ezfio.get_nuclei_nucl_charge()
coord = ezfio.get_nuclei_nucl_coord()
num = ezfio.get_nuclei_nucl_num()
for i in range(num):
temp = atom()
temp.charge = charge[i]
temp.coord = (coord[0][i], coord[1][i], coord[2][i])
temp.name = 'X'
temp.basis = []
def get_basisX(self):
coef = ezfio.get_ao_basis_ao_coef()
expo = ezfio.get_ao_basis_ao_expo()
nucl = ezfio.get_ao_basis_ao_nucl()
num = ezfio.get_ao_basis_ao_num()
power= ezfio.get_ao_basis_ao_power()
prim_num= ezfio.get_ao_basis_ao_prim_num()
self._basis = []
for i in range(num):
contr = contraction()
for j in range(prim_num[i]):
gauss = gaussian()
atom = self._geometry[nucl[i]-1]
gauss.center = atom.coord
gauss.expo = expo[j][i]
name = normalize_basis_name('x'*power[0][i]+'y'*power[1][i]+'z'*power[2][i])
if name == '': name = 's'
gauss.sym = name
def get_mo_types(self):
if self._mo_types is None:
self._mo_types = ['QMC']
return self._mo_types
def get_mo_sets(self):
if self._mo_sets is None:
self._mo_sets = {}
self._mo_sets['QMC'] = []
coef = ezfio.get_mo_basis_mo_coef()
energy = ezfio.get_mo_basis_mo_energy()
num = ezfio.get_mo_basis_mo_tot_num()
for i in range(num):
v = orbital()
v.basis = self.basis
v.set = 'QMC'
v.eigenvalue = energy[i]
v.vector = coef[i]
return self._mo_sets
def get_num_alpha(self):
if self._num_alpha is None:
self._num_alpha = ezfio.get_electrons_elec_alpha_num()
return self._num_alpha
def get_num_beta(self):
if self._num_beta is None:
self._num_beta = ezfio.get_electrons_elec_beta_num()
return self._num_beta
def get_determinants_mo_type(self):
if self._determinants_mo_type is None:
self._determinants_mo_type = 'QMC'
return self._determinants_mo_type
def get_csf_mo_type(self):
if self._csf_mo_type is None:
self._csf_mo_type = 'QMC'
return self._csf_mo_type
def get_determinants(self):
if self._determinants is None:
determinants = []
if self.csf is not None:
for csf in self.csf:
for new_det in csf.determinants:
if determinants != []:
self._determinants_mo_type = self.mo_types[-1]
self._determinants = determinants
return self._determinants
def get_csf(self):
method = self.methods[0]
if self._csf is None:
csf = []
ncore = ezfio.get_mo_basis_mo_closed_num()
nact = ezfio.get_mo_basis_mo_active_num()
core_a = []
core_b = []
for i in range(ncore):
num = ezfio.get_determinants_det_num()
occ = ezfio.get_determinants_det_occ()
if occ == []:
occ = [[[0]],[[0]]]
for i in range(num):
this_csf = CSF()
tempcsf_a = core_a + map(lambda x: x-1, occ[0][i])
tempcsf_b = core_b + map(lambda x: x-1, occ[1][i])
if csf != []:
self._csf = csf
return self._csf
def get_closed_mos(self):
if self._closed_mos is None:
cls = ezfio.get_mo_basis_mo_classif()
self._closed_mos = []
self._virtual_mos = []
self._active_mos = []
for i in range(len(cls)):
if cls[i] == 'c':
elif cls[i] == 'a':
elif cls[i] == 'v':
return self._closed_mos
def get_virtual_mos(self):
if self._virtual_mos is None:
return self._virtual_mos
def get_active_mos(self):
if self._active_mos is None:
return self._active_mos
def get_det_coefficients(self):
if self._det_coefficients is None:
self._det_coefficients = []
csf = self.csf
for state_coef in self.csf_coefficients:
vector = []
for i,c in enumerate(state_coef):
for d in csf[i].coefficients:
return self._det_coefficients
def get_csf_coefficients(self):
if self._csf_coefficients is None:
self._csf_coefficients = [ [] ]
self._csf_coefficients[0] = ezfio.get_determinants_det_coef()
return self._csf_coefficients
def get_occ_num(self):
if self._occ_num is None:
self._occ_num = {}
motype = 'QMC'
self._occ_num[motype] = ezfio.get_mo_basis_mo_occ()
return self._occ_num
if __name__ == '__main__':