10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-11-09 07:33:53 +01:00
quantum_package/plugins/Properties/delta_rho.irp.f
Thomas Applencourt 6a91e63cf3 Move into plugins
2015-06-17 18:23:56 +02:00

225 lines
7.5 KiB
Fortran

BEGIN_PROVIDER [integer, N_z_pts]
&BEGIN_PROVIDER [double precision, z_min]
&BEGIN_PROVIDER [double precision, z_max]
&BEGIN_PROVIDER [double precision, delta_z]
implicit none
z_min = -20.d0
z_max = 20.d0
delta_z = 0.1d0
N_z_pts = (z_max - z_min)/delta_z
print*,'N_z_pts = ',N_z_pts
END_PROVIDER
BEGIN_PROVIDER [double precision, integrated_delta_rho_all_points, (N_z_pts)]
BEGIN_DOC
!
! integrated_rho(alpha,z) - integrated_rho(beta,z) for all the z points
! chosen
!
END_DOC
implicit none
integer :: i,j,k,l,i_z,h
double precision :: z,function_integrated_delta_rho,c_k,c_j,n_i_h,accu
integrated_delta_rho_all_points = 0.d0
!$OMP PARALLEL DO DEFAULT(none) &
!$OMP PRIVATE(i,h,j,k,c_j,c_k,n_i_h,i_z) &
!$OMP SHARED(mo_tot_num,ao_num,mo_coef, &
!$OMP ao_integrated_delta_rho_all_points,one_body_spin_density_mo,integrated_delta_rho_all_points,N_z_pts)
do i_z = 1, N_z_pts
do i = 1, mo_tot_num
do h = 1, mo_tot_num
n_i_h = one_body_spin_density_mo(i,h)
if(dabs(n_i_h).lt.1.d-10)cycle
do j = 1, ao_num
c_j = mo_coef(j,i) ! coefficient of the ith MO on the jth AO
do k = 1, ao_num
c_k = mo_coef(k,h) ! coefficient of the hth MO on the kth AO
integrated_delta_rho_all_points(i_z) += c_k * c_j * n_i_h * ao_integrated_delta_rho_all_points(j,k,i_z)
enddo
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
z = z_min
accu = 0.d0
do i = 1, N_z_pts
accu += integrated_delta_rho_all_points(i)
write(i_unit_integrated_delta_rho,*)z,integrated_delta_rho_all_points(i),accu
z += delta_z
enddo
print*,'sum of integrated_delta_rho = ',accu
END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_integrated_delta_rho_all_points, (ao_num_align, ao_num, N_z_pts)]
BEGIN_DOC
! array of the overlap in x,y between the AO function and integrated between [z,z+dz] in the z axis
! for all the z points that are given (N_z_pts)
END_DOC
implicit none
integer :: i,j,n,l
double precision :: f,accu
integer :: dim1
double precision :: overlap, overlap_x, overlap_y, overlap_z
double precision :: alpha, beta, c
double precision :: A_center(3), B_center(3)
integer :: power_A(3), power_B(3)
integer :: i_z
double precision :: z,SABpartial,accu_x,accu_y,accu_z
dim1=100
z = z_min
do i_z = 1, N_z_pts
!$OMP PARALLEL DO DEFAULT(none) &
!$OMP PRIVATE(i,j,n,l,A_center,power_A,B_center,power_B,accu_z, &
!$OMP overlap_x,overlap_y,overlap_z,overlap,c,alpha,beta) &
!$OMP SHARED(ao_num,nucl_coord,ao_nucl,ao_power,ao_prim_num,ao_expo_ordered_transp,ao_coef_normalized_ordered_transp, &
!$OMP ao_integrated_delta_rho_all_points,N_z_pts,dim1,i_z,z,delta_z)
do j=1,ao_num
A_center(1) = nucl_coord( ao_nucl(j), 1 )
A_center(2) = nucl_coord( ao_nucl(j), 2 )
A_center(3) = nucl_coord( ao_nucl(j), 3 )
power_A(1) = ao_power( j, 1 )
power_A(2) = ao_power( j, 2 )
power_A(3) = ao_power( j, 3 )
do i= 1,ao_num
B_center(1) = nucl_coord( ao_nucl(i), 1 )
B_center(2) = nucl_coord( ao_nucl(i), 2 )
B_center(3) = nucl_coord( ao_nucl(i), 3 )
power_B(1) = ao_power( i, 1 )
power_B(2) = ao_power( i, 2 )
power_B(3) = ao_power( i, 3 )
accu_z = 0.d0
do n = 1,ao_prim_num(j)
alpha = ao_expo_ordered_transp(n,j)
do l = 1, ao_prim_num(i)
beta = ao_expo_ordered_transp(l,i)
call overlap_gaussian_xyz(A_center,B_center,alpha,beta,power_A,power_B,overlap_x,overlap_y,overlap_z,overlap,dim1)
c = ao_coef_normalized_ordered_transp(n,j) * ao_coef_normalized_ordered_transp(l,i)
accu_z += c* overlap_x * overlap_y * SABpartial(z,z+delta_z,A_center,B_center,power_A,power_B,alpha,beta)
enddo
enddo
ao_integrated_delta_rho_all_points(i,j,i_z) = accu_z
enddo
enddo
!$OMP END PARALLEL DO
z += delta_z
enddo
END_PROVIDER
BEGIN_PROVIDER [integer, i_unit_integrated_delta_rho]
implicit none
BEGIN_DOC
! fortran unit for the writing of the integrated delta_rho
END_DOC
integer :: getUnitAndOpen
character*(128) :: output_i_unit_integrated_delta_rho
output_i_unit_integrated_delta_rho=trim(ezfio_filename)//'/properties/delta_rho'
i_unit_integrated_delta_rho= getUnitAndOpen(output_i_unit_integrated_delta_rho,'w')
END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_integrated_delta_rho_one_point, (ao_num_align, ao_num )]
BEGIN_DOC
! array of the overlap in x,y between the AO function and integrated between [z,z+dz] in the z axis
! for one specific z point
END_DOC
implicit none
integer :: i,j,n,l
double precision :: f
integer :: dim1
double precision :: overlap, overlap_x, overlap_y, overlap_z
double precision :: alpha, beta, c
double precision :: A_center(3), B_center(3)
integer :: power_A(3), power_B(3)
integer :: i_z
double precision :: z,SABpartial,accu_z
dim1=100
z = z_one_point
!$OMP PARALLEL DO DEFAULT(none) &
!$OMP PRIVATE(i,j,n,l,A_center,power_A,B_center,power_B,accu_z, &
!$OMP overlap_x,overlap_y,overlap_z,overlap,c,alpha,beta) &
!$OMP SHARED(ao_num,nucl_coord,ao_nucl,ao_power,ao_prim_num,ao_expo_ordered_transp,ao_coef_normalized_ordered_transp, &
!$OMP ao_integrated_delta_rho_one_point,dim1,z,delta_z)
do j=1,ao_num
A_center(1) = nucl_coord( ao_nucl(j), 1 )
A_center(2) = nucl_coord( ao_nucl(j), 2 )
A_center(3) = nucl_coord( ao_nucl(j), 3 )
power_A(1) = ao_power( j, 1 )
power_A(2) = ao_power( j, 2 )
power_A(3) = ao_power( j, 3 )
do i= 1,ao_num
B_center(1) = nucl_coord( ao_nucl(i), 1 )
B_center(2) = nucl_coord( ao_nucl(i), 2 )
B_center(3) = nucl_coord( ao_nucl(i), 3 )
power_B(1) = ao_power( i, 1 )
power_B(2) = ao_power( i, 2 )
power_B(3) = ao_power( i, 3 )
accu_z = 0.d0
do n = 1,ao_prim_num(j)
alpha = ao_expo_ordered_transp(n,j)
do l = 1, ao_prim_num(i)
beta = ao_expo_ordered_transp(l,i)
call overlap_gaussian_xyz(A_center,B_center,alpha,beta,power_A,power_B,overlap_x,overlap_y,overlap_z,overlap,dim1)
c = ao_coef_normalized_ordered_transp(n,j) * ao_coef_normalized_ordered_transp(l,i)
accu_z += c* overlap_x * overlap_y * SABpartial(z,z+delta_z,A_center,B_center,power_A,power_B,alpha,beta)
enddo
enddo
ao_integrated_delta_rho_one_point(i,j) = accu_z
enddo
enddo
!$OMP END PARALLEL DO
END_PROVIDER
BEGIN_PROVIDER [double precision, mo_integrated_delta_rho_one_point, (mo_tot_num_align,mo_tot_num)]
BEGIN_DOC
!
! array of the integrals needed of integrated_rho(alpha,z) - integrated_rho(beta,z) for z = z_one_point
! on the MO basis
!
END_DOC
implicit none
integer :: i,j,k,l,i_z,h
double precision :: z,function_integrated_delta_rho,c_k,c_j
mo_integrated_delta_rho_one_point = 0.d0
!$OMP PARALLEL DO DEFAULT(none) &
!$OMP PRIVATE(i,j,h,k,c_j,c_k) &
!$OMP SHARED(mo_tot_num,ao_num,mo_coef, &
!$OMP mo_integrated_delta_rho_one_point, ao_integrated_delta_rho_one_point)
do i = 1, mo_tot_num
do h = 1, mo_tot_num
do j = 1, ao_num
c_j = mo_coef(j,i) ! coefficient of the jth AO on the ith MO
do k = 1, ao_num
c_k = mo_coef(k,h) ! coefficient of the kth AO on the hth MO
mo_integrated_delta_rho_one_point(i,h) += c_k * c_j * ao_integrated_delta_rho_one_point(j,k)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
END_PROVIDER
BEGIN_PROVIDER [ double precision, integrated_delta_rho_one_point]
implicit none
BEGIN_DOC
!
! integral (x,y) and (z,z+delta_z) of rho(alpha) - rho(beta)
! on the MO basis
!
END_DOC
double precision :: average
call get_average(mo_integrated_delta_rho_one_point,one_body_spin_density_mo,average)
integrated_delta_rho_one_point = average
END_PROVIDER