mirror of
https://github.com/LCPQ/quantum_package
synced 2025-01-10 13:08:23 +01:00
191 lines
5.0 KiB
Fortran
191 lines
5.0 KiB
Fortran
BEGIN_PROVIDER [ double precision, lambda_mrcc, (N_states,psi_det_size) ]
|
|
&BEGIN_PROVIDER [ double precision, lambda_pert, (N_states,psi_det_size) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! cm/<Psi_0|H|D_m> or perturbative 1/Delta_E(m)
|
|
END_DOC
|
|
integer :: i,k
|
|
double precision :: ihpsi(N_states), hii
|
|
|
|
do i=1,N_det_non_cas
|
|
call i_h_psi(psi_non_cas(1,1,i), psi_cas, psi_cas_coef, N_int, N_det_cas, &
|
|
size(psi_cas_coef,1), n_states, ihpsi)
|
|
call i_h_j(psi_non_cas(1,1,i),psi_non_cas(1,1,i),N_int,hii)
|
|
do k=1,N_states
|
|
|
|
lambda_pert(k,i) = 1.d0 / (psi_cas_energy_diagonalized(k)-hii)
|
|
lambda_mrcc(k,i) = psi_non_cas_coef(i,k)/ihpsi(k)
|
|
if (dabs(ihpsi(k)).le.1.d-3) then
|
|
lambda_mrcc(k,i) = 1.d0 / (psi_cas_energy_diagonalized(k)-hii)
|
|
icount_manu = icount_manu+1
|
|
cycle
|
|
endif
|
|
enddo
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
|
|
|
|
|
|
BEGIN_PROVIDER [ character*(32), dressing_type ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! [ Simple | MRCC ]
|
|
END_DOC
|
|
dressing_type = "MRCC"
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ double precision, delta_ij_non_cas, (N_det_non_cas, N_det_non_cas,N_states) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Dressing matrix in SD basis
|
|
END_DOC
|
|
delta_ij_non_cas = 0.d0
|
|
call H_apply_mrcc_simple(delta_ij_non_cas,N_det_non_cas)
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ double precision, delta_ij, (N_det,N_det,N_states) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Dressing matrix in N_det basis
|
|
END_DOC
|
|
integer :: i,j,m
|
|
delta_ij = 0.d0
|
|
if (dressing_type == "MRCC") then
|
|
call H_apply_mrcc(delta_ij,N_det)
|
|
else if (dressing_type == "Simple") then
|
|
do m=1,N_states
|
|
do j=1,N_det_non_cas
|
|
do i=1,N_det_non_cas
|
|
delta_ij(idx_non_cas(i),idx_non_cas(j),m) = delta_ij_non_cas(i,j,m)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
endif
|
|
do i = 1, N_det
|
|
do j = 1, N_det
|
|
do m = 1, N_states
|
|
if(isnan(delta_ij(j,i,m)))then
|
|
delta_ij(j,i,m) = 0.d0
|
|
endif
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ double precision, h_matrix_dressed, (N_det,N_det) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Dressed H with Delta_ij
|
|
END_DOC
|
|
integer :: i, j
|
|
do j=1,N_det
|
|
do i=1,N_det
|
|
h_matrix_dressed(i,j) = h_matrix_all_dets(i,j) + delta_ij(i,j,1)
|
|
enddo
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
BEGIN_PROVIDER [ double precision, CI_electronic_energy_dressed, (N_states_diag) ]
|
|
&BEGIN_PROVIDER [ double precision, CI_eigenvectors_dressed, (N_det,N_states_diag) ]
|
|
&BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2_dressed, (N_states_diag) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Eigenvectors/values of the CI matrix
|
|
END_DOC
|
|
integer :: i,j
|
|
|
|
do j=1,N_states_diag
|
|
do i=1,N_det
|
|
CI_eigenvectors_dressed(i,j) = psi_coef(i,j)
|
|
enddo
|
|
enddo
|
|
|
|
if (diag_algorithm == "Davidson") then
|
|
|
|
integer :: istate
|
|
istate = 1
|
|
call davidson_diag_mrcc(psi_det,CI_eigenvectors_dressed,CI_electronic_energy_dressed, &
|
|
size(CI_eigenvectors_dressed,1),N_det,N_states_diag,N_int,output_determinants,istate)
|
|
|
|
else if (diag_algorithm == "Lapack") then
|
|
|
|
double precision, allocatable :: eigenvectors(:,:), eigenvalues(:)
|
|
allocate (eigenvectors(size(H_matrix_dressed,1),N_det))
|
|
allocate (eigenvalues(N_det))
|
|
call lapack_diag(eigenvalues,eigenvectors, &
|
|
H_matrix_dressed,size(H_matrix_dressed,1),N_det)
|
|
CI_electronic_energy_dressed(:) = 0.d0
|
|
do i=1,N_det
|
|
CI_eigenvectors_dressed(i,1) = eigenvectors(i,1)
|
|
enddo
|
|
integer :: i_state
|
|
double precision :: s2
|
|
i_state = 0
|
|
if (s2_eig) then
|
|
do j=1,N_det
|
|
call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2)
|
|
if(dabs(s2-expected_s2).le.0.3d0)then
|
|
i_state += 1
|
|
do i=1,N_det
|
|
CI_eigenvectors_dressed(i,i_state) = eigenvectors(i,j)
|
|
enddo
|
|
CI_electronic_energy_dressed(i_state) = eigenvalues(j)
|
|
CI_eigenvectors_s2_dressed(i_state) = s2
|
|
endif
|
|
if (i_state.ge.N_states_diag) then
|
|
exit
|
|
endif
|
|
enddo
|
|
else
|
|
do j=1,N_states_diag
|
|
call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2)
|
|
i_state += 1
|
|
do i=1,N_det
|
|
CI_eigenvectors_dressed(i,i_state) = eigenvectors(i,j)
|
|
enddo
|
|
CI_electronic_energy_dressed(i_state) = eigenvalues(j)
|
|
CI_eigenvectors_s2_dressed(i_state) = s2
|
|
enddo
|
|
endif
|
|
deallocate(eigenvectors,eigenvalues)
|
|
endif
|
|
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ double precision, CI_energy_dressed, (N_states_diag) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! N_states lowest eigenvalues of the dressed CI matrix
|
|
END_DOC
|
|
|
|
integer :: j
|
|
character*(8) :: st
|
|
call write_time(output_determinants)
|
|
do j=1,N_states_diag
|
|
CI_energy_dressed(j) = CI_electronic_energy_dressed(j) + nuclear_repulsion
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|
|
subroutine diagonalize_CI_dressed
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Replace the coefficients of the CI states by the coefficients of the
|
|
! eigenstates of the CI matrix
|
|
END_DOC
|
|
integer :: i,j
|
|
do j=1,N_states_diag
|
|
do i=1,N_det
|
|
psi_coef(i,j) = CI_eigenvectors_dressed(i,j)
|
|
enddo
|
|
enddo
|
|
SOFT_TOUCH psi_coef
|
|
|
|
end
|