mirror of
https://github.com/LCPQ/quantum_package
synced 2024-11-09 07:33:53 +01:00
229 lines
7.6 KiB
Fortran
229 lines
7.6 KiB
Fortran
|
|
subroutine pt2_epstein_nesbet_SC2_projected(det_pert,c_pert,e_2_pert,H_pert_diag,Nint,ndet,N_st)
|
|
use bitmasks
|
|
implicit none
|
|
integer, intent(in) :: Nint,ndet,N_st
|
|
integer(bit_kind), intent(in) :: det_pert(Nint,2)
|
|
double precision , intent(out) :: c_pert(N_st),e_2_pert(N_st),H_pert_diag(N_st)
|
|
double precision :: i_H_psi_array(N_st)
|
|
integer :: idx_repeat(0:ndet)
|
|
|
|
BEGIN_DOC
|
|
! compute the Epstein-Nesbet perturbative first order coefficient and second order energetic contribution
|
|
!
|
|
! for the various N_st states,
|
|
!
|
|
! but with the correction in the denominator
|
|
!
|
|
! comming from the interaction of that determinant with all the others determinants
|
|
!
|
|
! that can be repeated by repeating all the double excitations
|
|
!
|
|
! : you repeat all the correlation energy already taken into account in CI_electronic_energy(1)
|
|
!
|
|
! that could be repeated to this determinant.
|
|
!
|
|
! In addition, for the perturbative energetic contribution you have the standard second order
|
|
!
|
|
! e_2_pert = <psi_i|H|det_pert>^2/(Delta_E)
|
|
!
|
|
! and also the purely projected contribution
|
|
!
|
|
! H_pert_diag = <HF|H|det_pert> c_pert
|
|
END_DOC
|
|
|
|
integer :: i,j,degree,l
|
|
double precision :: diag_H_mat_elem,accu_e_corr,hij,h0j,h,delta_E
|
|
double precision :: repeat_all_e_corr,accu_e_corr_tmp,e_2_pert_fonda
|
|
|
|
ASSERT (Nint == N_int)
|
|
ASSERT (Nint > 0)
|
|
|
|
call i_H_psi_SC2(det_pert,psi_selectors,psi_selectors_coef,Nint,N_det_selectors,psi_selectors_size,N_st,i_H_psi_array,idx_repeat)
|
|
accu_e_corr = 0.d0
|
|
!$IVDEP
|
|
do i = 1, idx_repeat(0)
|
|
accu_e_corr = accu_e_corr + E_corr_per_selectors(idx_repeat(i))
|
|
enddo
|
|
h = diag_H_mat_elem(det_pert,Nint) + accu_e_corr
|
|
delta_E = 1.d0/(CI_SC2_electronic_energy(1) - h)
|
|
|
|
|
|
c_pert(1) = i_H_psi_array(1) /(CI_SC2_electronic_energy(1) - h)
|
|
e_2_pert(1) = i_H_psi_array(1) * c_pert(1)
|
|
|
|
do i =2,N_st
|
|
H_pert_diag(i) = h
|
|
if (dabs(CI_SC2_electronic_energy(i) - h) > 1.d-6) then
|
|
c_pert(i) = i_H_psi_array(i) / (-dabs(CI_SC2_electronic_energy(i) - h))
|
|
e_2_pert(i) = (c_pert(i) * i_H_psi_array(i))
|
|
else
|
|
c_pert(i) = i_H_psi_array(i)
|
|
e_2_pert(i) = -dabs(i_H_psi_array(i))
|
|
endif
|
|
enddo
|
|
|
|
degree = popcnt(xor( ref_bitmask(1,1), det_pert(1,1))) + &
|
|
popcnt(xor( ref_bitmask(1,2), det_pert(1,2)))
|
|
!DEC$ NOUNROLL
|
|
do l=2,Nint
|
|
degree = degree+ popcnt(xor( ref_bitmask(l,1), det_pert(l,1))) + &
|
|
popcnt(xor( ref_bitmask(l,2), det_pert(l,2)))
|
|
enddo
|
|
if(degree==4)then
|
|
! <psi|delta_H|psi>
|
|
e_2_pert_fonda = e_2_pert(1)
|
|
H_pert_diag(1) = e_2_pert(1) * c_pert(1) * c_pert(1)
|
|
do i = 1, N_st
|
|
do j = 1, idx_repeat(0)
|
|
e_2_pert(i) += e_2_pert_fonda * psi_selectors_coef(idx_repeat(j),i) * psi_selectors_coef(idx_repeat(j),i)
|
|
enddo
|
|
enddo
|
|
endif
|
|
|
|
end
|
|
|
|
|
|
subroutine pt2_epstein_nesbet_SC2_no_projected(det_pert,c_pert,e_2_pert,H_pert_diag,Nint,ndet,N_st)
|
|
use bitmasks
|
|
implicit none
|
|
integer, intent(in) :: Nint,ndet,N_st
|
|
integer(bit_kind), intent(in) :: det_pert(Nint,2)
|
|
double precision , intent(out) :: c_pert(N_st),e_2_pert(N_st),H_pert_diag(N_st)
|
|
double precision :: i_H_psi_array(N_st)
|
|
integer :: idx_repeat(0:ndet)
|
|
|
|
BEGIN_DOC
|
|
! compute the Epstein-Nesbet perturbative first order coefficient and second order energetic contribution
|
|
!
|
|
! for the various N_st states,
|
|
!
|
|
! but with the correction in the denominator
|
|
!
|
|
! comming from the interaction of that determinant with all the others determinants
|
|
!
|
|
! that can be repeated by repeating all the double excitations
|
|
!
|
|
! : you repeat all the correlation energy already taken into account in CI_electronic_energy(1)
|
|
!
|
|
! that could be repeated to this determinant.
|
|
!
|
|
! In addition, for the perturbative energetic contribution you have the standard second order
|
|
!
|
|
! e_2_pert = <psi_i|H|det_pert>^2/(Delta_E)
|
|
!
|
|
! and also the purely projected contribution
|
|
!
|
|
! H_pert_diag = <HF|H|det_pert> c_pert
|
|
END_DOC
|
|
|
|
integer :: i,j,degree,l
|
|
double precision :: diag_H_mat_elem,accu_e_corr,hij,h0j,h,delta_E
|
|
double precision :: repeat_all_e_corr,accu_e_corr_tmp,e_2_pert_fonda
|
|
|
|
ASSERT (Nint == N_int)
|
|
ASSERT (Nint > 0)
|
|
|
|
call i_H_psi_SC2(det_pert,psi_selectors,psi_selectors_coef,Nint,N_det_selectors,psi_selectors_size,N_st,i_H_psi_array,idx_repeat)
|
|
accu_e_corr = 0.d0
|
|
!$IVDEP
|
|
do i = 1, idx_repeat(0)
|
|
accu_e_corr = accu_e_corr + E_corr_per_selectors(idx_repeat(i))
|
|
enddo
|
|
h = diag_H_mat_elem(det_pert,Nint) + accu_e_corr
|
|
delta_E = 1.d0/(CI_SC2_electronic_energy(1) - h)
|
|
|
|
|
|
c_pert(1) = i_H_psi_array(1) /(CI_SC2_electronic_energy(1) - h)
|
|
e_2_pert(1) = i_H_psi_array(1) * c_pert(1)
|
|
|
|
do i =2,N_st
|
|
H_pert_diag(i) = h
|
|
if (dabs(CI_SC2_electronic_energy(i) - h) > 1.d-6) then
|
|
c_pert(i) = i_H_psi_array(i) / (-dabs(CI_SC2_electronic_energy(i) - h))
|
|
e_2_pert(i) = (c_pert(i) * i_H_psi_array(i))
|
|
else
|
|
c_pert(i) = i_H_psi_array(i)
|
|
e_2_pert(i) = -dabs(i_H_psi_array(i))
|
|
endif
|
|
enddo
|
|
end
|
|
|
|
|
|
|
|
|
|
|
|
double precision function repeat_all_e_corr(key_in)
|
|
implicit none
|
|
integer(bit_kind), intent(in) :: key_in(N_int,2)
|
|
integer :: i,degree
|
|
double precision :: accu
|
|
use bitmasks
|
|
accu = 0.d0
|
|
call get_excitation_degree(key_in,ref_bitmask,degree,N_int)
|
|
if(degree==2)then
|
|
do i = 1, N_det_selectors
|
|
call get_excitation_degree(ref_bitmask,psi_selectors(1,1,i),degree,N_int)
|
|
if(degree.ne.2)cycle
|
|
call get_excitation_degree(key_in,psi_selectors(1,1,i),degree,N_int)
|
|
if (degree<=3)cycle
|
|
accu += E_corr_per_selectors(i)
|
|
enddo
|
|
elseif(degree==1)then
|
|
do i = 1, N_det_selectors
|
|
call get_excitation_degree(ref_bitmask,psi_selectors(1,1,i),degree,N_int)
|
|
if(degree.ne.2)cycle
|
|
call get_excitation_degree(key_in,psi_selectors(1,1,i),degree,N_int)
|
|
if (degree<=2)cycle
|
|
accu += E_corr_per_selectors(i)
|
|
enddo
|
|
endif
|
|
repeat_all_e_corr = accu
|
|
|
|
end
|
|
|
|
|
|
subroutine pt2_epstein_nesbet_sc2(det_pert,c_pert,e_2_pert,H_pert_diag,Nint,ndet,N_st)
|
|
use bitmasks
|
|
implicit none
|
|
integer, intent(in) :: Nint,ndet,N_st
|
|
integer(bit_kind), intent(in) :: det_pert(Nint,2)
|
|
double precision , intent(out) :: c_pert(N_st),e_2_pert(N_st),H_pert_diag(N_st)
|
|
double precision :: i_H_psi_array(N_st)
|
|
|
|
BEGIN_DOC
|
|
! compute the standard Epstein-Nesbet perturbative first order coefficient and second order energetic contribution
|
|
!
|
|
! for the various N_st states, but with the CISD_SC2 energies and coefficients
|
|
!
|
|
! c_pert(i) = <psi(i)|H|det_pert>/( E(i) - <det_pert|H|det_pert> )
|
|
!
|
|
! e_2_pert(i) = <psi(i)|H|det_pert>^2/( E(i) - <det_pert|H|det_pert> )
|
|
!
|
|
END_DOC
|
|
|
|
integer :: i,j
|
|
double precision :: diag_H_mat_elem, h
|
|
PROVIDE selection_criterion
|
|
|
|
ASSERT (Nint == N_int)
|
|
ASSERT (Nint > 0)
|
|
call i_H_psi(det_pert,psi_selectors,psi_selectors_coef,Nint,N_det_selectors,psi_selectors_size,N_st,i_H_psi_array)
|
|
h = diag_H_mat_elem(det_pert,Nint)
|
|
do i =1,N_st
|
|
if(CI_SC2_electronic_energy(i)>h.and.CI_SC2_electronic_energy(i).ne.0.d0)then
|
|
c_pert(i) = -1.d0
|
|
e_2_pert(i) = selection_criterion*selection_criterion_factor*2.d0
|
|
else if (dabs(CI_SC2_electronic_energy(i) - h) > 1.d-6) then
|
|
c_pert(i) = i_H_psi_array(i) / (CI_SC2_electronic_energy(i) - h)
|
|
H_pert_diag(i) = h*c_pert(i)*c_pert(i)
|
|
e_2_pert(i) = c_pert(i) * i_H_psi_array(i)
|
|
else
|
|
c_pert(i) = -1.d0
|
|
e_2_pert(i) = -dabs(i_H_psi_array(i))
|
|
H_pert_diag(i) = h
|
|
endif
|
|
enddo
|
|
|
|
end
|