mirror of
https://github.com/LCPQ/quantum_package
synced 2024-11-14 01:53:55 +01:00
419 lines
12 KiB
Fortran
419 lines
12 KiB
Fortran
BEGIN_PROVIDER [ integer, davidson_iter_max ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Max number of Davidson iterations
|
|
END_DOC
|
|
davidson_iter_max = 100
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ integer, davidson_sze_max ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Max number of Davidson sizes
|
|
END_DOC
|
|
ASSERT (davidson_sze_max <= davidson_iter_max)
|
|
davidson_sze_max = 8*N_states_diag
|
|
END_PROVIDER
|
|
|
|
subroutine davidson_diag(dets_in,u_in,energies,dim_in,sze,N_st,Nint,iunit)
|
|
use bitmasks
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Davidson diagonalization.
|
|
!
|
|
! dets_in : bitmasks corresponding to determinants
|
|
!
|
|
! u_in : guess coefficients on the various states. Overwritten
|
|
! on exit
|
|
!
|
|
! dim_in : leftmost dimension of u_in
|
|
!
|
|
! sze : Number of determinants
|
|
!
|
|
! N_st : Number of eigenstates
|
|
!
|
|
! iunit : Unit number for the I/O
|
|
!
|
|
! Initial guess vectors are not necessarily orthonormal
|
|
END_DOC
|
|
integer, intent(in) :: dim_in, sze, N_st, Nint, iunit
|
|
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
|
|
double precision, intent(inout) :: u_in(dim_in,N_st)
|
|
double precision, intent(out) :: energies(N_st)
|
|
double precision, allocatable :: H_jj(:)
|
|
|
|
double precision :: diag_h_mat_elem
|
|
integer :: i
|
|
ASSERT (N_st > 0)
|
|
ASSERT (sze > 0)
|
|
ASSERT (Nint > 0)
|
|
ASSERT (Nint == N_int)
|
|
PROVIDE mo_bielec_integrals_in_map
|
|
allocate(H_jj(sze))
|
|
|
|
!$OMP PARALLEL DEFAULT(NONE) &
|
|
!$OMP SHARED(sze,H_jj,dets_in,Nint) &
|
|
!$OMP PRIVATE(i)
|
|
!$OMP DO SCHEDULE(guided)
|
|
do i=1,sze
|
|
H_jj(i) = diag_h_mat_elem(dets_in(1,1,i),Nint)
|
|
enddo
|
|
!$OMP END DO
|
|
!$OMP END PARALLEL
|
|
|
|
call davidson_diag_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,Nint,iunit)
|
|
deallocate (H_jj)
|
|
end
|
|
|
|
subroutine davidson_diag_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,N_st,Nint,iunit)
|
|
use bitmasks
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Davidson diagonalization with specific diagonal elements of the H matrix
|
|
!
|
|
! H_jj : specific diagonal H matrix elements to diagonalize de Davidson
|
|
!
|
|
! dets_in : bitmasks corresponding to determinants
|
|
!
|
|
! u_in : guess coefficients on the various states. Overwritten
|
|
! on exit
|
|
!
|
|
! dim_in : leftmost dimension of u_in
|
|
!
|
|
! sze : Number of determinants
|
|
!
|
|
! N_st : Number of eigenstates
|
|
!
|
|
! iunit : Unit for the I/O
|
|
!
|
|
! Initial guess vectors are not necessarily orthonormal
|
|
END_DOC
|
|
integer, intent(in) :: dim_in, sze, N_st, Nint
|
|
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
|
|
double precision, intent(in) :: H_jj(sze)
|
|
integer, intent(in) :: iunit
|
|
double precision, intent(inout) :: u_in(dim_in,N_st)
|
|
double precision, intent(out) :: energies(N_st)
|
|
|
|
integer :: iter
|
|
integer :: i,j,k,l,m
|
|
logical :: converged
|
|
|
|
double precision :: overlap(N_st,N_st)
|
|
double precision :: u_dot_v, u_dot_u
|
|
|
|
integer, allocatable :: kl_pairs(:,:)
|
|
integer :: k_pairs, kl
|
|
|
|
integer :: iter2
|
|
double precision, allocatable :: W(:,:,:), U(:,:,:), R(:,:)
|
|
double precision, allocatable :: y(:,:,:,:), h(:,:,:,:), lambda(:)
|
|
double precision :: diag_h_mat_elem
|
|
double precision :: residual_norm(N_st)
|
|
character*(16384) :: write_buffer
|
|
double precision :: to_print(2,N_st)
|
|
double precision :: cpu, wall
|
|
|
|
PROVIDE det_connections
|
|
|
|
call write_time(iunit)
|
|
call wall_time(wall)
|
|
call cpu_time(cpu)
|
|
write(iunit,'(A)') ''
|
|
write(iunit,'(A)') 'Davidson Diagonalization'
|
|
write(iunit,'(A)') '------------------------'
|
|
write(iunit,'(A)') ''
|
|
call write_int(iunit,N_st,'Number of states')
|
|
call write_int(iunit,sze,'Number of determinants')
|
|
write(iunit,'(A)') ''
|
|
write_buffer = '===== '
|
|
do i=1,N_st
|
|
write_buffer = trim(write_buffer)//' ================ ================'
|
|
enddo
|
|
write(iunit,'(A)') trim(write_buffer)
|
|
write_buffer = ' Iter'
|
|
do i=1,N_st
|
|
write_buffer = trim(write_buffer)//' Energy Residual'
|
|
enddo
|
|
write(iunit,'(A)') trim(write_buffer)
|
|
write_buffer = '===== '
|
|
do i=1,N_st
|
|
write_buffer = trim(write_buffer)//' ================ ================'
|
|
enddo
|
|
write(iunit,'(A)') trim(write_buffer)
|
|
|
|
allocate( &
|
|
kl_pairs(2,N_st*(N_st+1)/2), &
|
|
W(sze,N_st,davidson_sze_max), &
|
|
U(sze,N_st,davidson_sze_max), &
|
|
R(sze,N_st), &
|
|
h(N_st,davidson_sze_max,N_st,davidson_sze_max), &
|
|
y(N_st,davidson_sze_max,N_st,davidson_sze_max), &
|
|
lambda(N_st*davidson_sze_max))
|
|
|
|
ASSERT (N_st > 0)
|
|
ASSERT (sze > 0)
|
|
ASSERT (Nint > 0)
|
|
ASSERT (Nint == N_int)
|
|
|
|
! Initialization
|
|
! ==============
|
|
|
|
k_pairs=0
|
|
do l=1,N_st
|
|
do k=1,l
|
|
k_pairs+=1
|
|
kl_pairs(1,k_pairs) = k
|
|
kl_pairs(2,k_pairs) = l
|
|
enddo
|
|
enddo
|
|
|
|
!$OMP PARALLEL DEFAULT(NONE) &
|
|
!$OMP SHARED(U,sze,N_st,overlap,kl_pairs,k_pairs, &
|
|
!$OMP Nint,dets_in,u_in) &
|
|
!$OMP PRIVATE(k,l,kl,i)
|
|
|
|
|
|
! Orthonormalize initial guess
|
|
! ============================
|
|
|
|
!$OMP DO
|
|
do kl=1,k_pairs
|
|
k = kl_pairs(1,kl)
|
|
l = kl_pairs(2,kl)
|
|
if (k/=l) then
|
|
overlap(k,l) = u_dot_v(U_in(1,k),U_in(1,l),sze)
|
|
overlap(l,k) = overlap(k,l)
|
|
else
|
|
overlap(k,k) = u_dot_u(U_in(1,k),sze)
|
|
endif
|
|
enddo
|
|
!$OMP END DO
|
|
!$OMP END PARALLEL
|
|
|
|
call ortho_lowdin(overlap,size(overlap,1),N_st,U_in,size(U_in,1),sze)
|
|
|
|
! Davidson iterations
|
|
! ===================
|
|
|
|
converged = .False.
|
|
|
|
do while (.not.converged)
|
|
|
|
!$OMP PARALLEL DEFAULT(NONE) &
|
|
!$OMP PRIVATE(k,i) SHARED(U,u_in,sze,N_st)
|
|
do k=1,N_st
|
|
!$OMP DO
|
|
do i=1,sze
|
|
U(i,k,1) = u_in(i,k)
|
|
enddo
|
|
!$OMP END DO
|
|
enddo
|
|
!$OMP END PARALLEL
|
|
|
|
do iter=1,davidson_sze_max-1
|
|
|
|
! Compute W_k = H |u_k>
|
|
! ----------------------
|
|
|
|
do k=1,N_st
|
|
call H_u_0(W(1,k,iter),U(1,k,iter),H_jj,sze,dets_in,Nint)
|
|
enddo
|
|
|
|
! Compute h_kl = <u_k | W_l> = <u_k| H |u_l>
|
|
! -------------------------------------------
|
|
|
|
do l=1,N_st
|
|
do k=1,N_st
|
|
do iter2=1,iter-1
|
|
h(k,iter2,l,iter) = u_dot_v(U(1,k,iter2),W(1,l,iter),sze)
|
|
h(k,iter,l,iter2) = h(k,iter2,l,iter)
|
|
enddo
|
|
enddo
|
|
do k=1,l
|
|
h(k,iter,l,iter) = u_dot_v(U(1,k,iter),W(1,l,iter),sze)
|
|
h(l,iter,k,iter) = h(k,iter,l,iter)
|
|
enddo
|
|
enddo
|
|
|
|
!DEBUG H MATRIX
|
|
!do i=1,iter
|
|
! print '(10(x,F16.10))', h(1,i,1,1:i)
|
|
!enddo
|
|
!print *, ''
|
|
!END
|
|
|
|
! Diagonalize h
|
|
! -------------
|
|
call lapack_diag(lambda,y,h,N_st*davidson_sze_max,N_st*iter)
|
|
|
|
! Express eigenvectors of h in the determinant basis
|
|
! --------------------------------------------------
|
|
|
|
do k=1,N_st
|
|
do i=1,sze
|
|
U(i,k,iter+1) = 0.d0
|
|
W(i,k,iter+1) = 0.d0
|
|
do l=1,N_st
|
|
do iter2=1,iter
|
|
U(i,k,iter+1) = U(i,k,iter+1) + U(i,l,iter2)*y(l,iter2,k,1)
|
|
W(i,k,iter+1) = W(i,k,iter+1) + W(i,l,iter2)*y(l,iter2,k,1)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
! Compute residual vector
|
|
! -----------------------
|
|
|
|
do k=1,N_st
|
|
do i=1,sze
|
|
R(i,k) = lambda(k) * U(i,k,iter+1) - W(i,k,iter+1)
|
|
enddo
|
|
residual_norm(k) = u_dot_u(R(1,k),sze)
|
|
to_print(1,k) = lambda(k) + nuclear_repulsion
|
|
to_print(2,k) = residual_norm(k)
|
|
enddo
|
|
|
|
write(iunit,'(X,I3,X,100(X,F16.10,X,E16.6))'), iter, to_print(:,1:N_st)
|
|
call davidson_converged(lambda,residual_norm,wall,iter,cpu,N_st,converged)
|
|
if (converged) then
|
|
exit
|
|
endif
|
|
|
|
|
|
! Davidson step
|
|
! -------------
|
|
|
|
do k=1,N_st
|
|
do i=1,sze
|
|
U(i,k,iter+1) = -1.d0/max(H_jj(i) - lambda(k),1.d-2) * R(i,k)
|
|
enddo
|
|
enddo
|
|
|
|
! Gram-Schmidt
|
|
! ------------
|
|
|
|
double precision :: c
|
|
do k=1,N_st
|
|
do iter2=1,iter
|
|
do l=1,N_st
|
|
c = u_dot_v(U(1,k,iter+1),U(1,l,iter2),sze)
|
|
do i=1,sze
|
|
U(i,k,iter+1) -= c * U(i,l,iter2)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
do l=1,k-1
|
|
c = u_dot_v(U(1,k,iter+1),U(1,l,iter+1),sze)
|
|
do i=1,sze
|
|
U(i,k,iter+1) -= c * U(i,l,iter+1)
|
|
enddo
|
|
enddo
|
|
call normalize( U(1,k,iter+1), sze )
|
|
enddo
|
|
|
|
!DEBUG : CHECK OVERLAP
|
|
!print *, '==='
|
|
!do k=1,iter+1
|
|
! do l=1,k
|
|
! c = u_dot_v(U(1,1,k),U(1,1,l),sze)
|
|
! print *, k,l, c
|
|
! enddo
|
|
!enddo
|
|
!print *, '==='
|
|
!pause
|
|
!END DEBUG
|
|
|
|
|
|
enddo
|
|
|
|
if (.not.converged) then
|
|
iter = davidson_sze_max-1
|
|
endif
|
|
|
|
! Re-contract to u_in
|
|
! -----------
|
|
|
|
do k=1,N_st
|
|
energies(k) = lambda(k)
|
|
do i=1,sze
|
|
u_in(i,k) = 0.d0
|
|
do iter2=1,iter
|
|
do l=1,N_st
|
|
u_in(i,k) += U(i,l,iter2)*y(l,iter2,k,1)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
enddo
|
|
|
|
write_buffer = '===== '
|
|
do i=1,N_st
|
|
write_buffer = trim(write_buffer)//' ================ ================'
|
|
enddo
|
|
write(iunit,'(A)') trim(write_buffer)
|
|
write(iunit,'(A)') ''
|
|
call write_time(iunit)
|
|
|
|
deallocate ( &
|
|
kl_pairs, &
|
|
W, &
|
|
U, &
|
|
R, &
|
|
h, &
|
|
y, &
|
|
lambda &
|
|
)
|
|
abort_here = abort_all
|
|
end
|
|
|
|
BEGIN_PROVIDER [ character(64), davidson_criterion ]
|
|
&BEGIN_PROVIDER [ double precision, davidson_threshold ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Can be : [ energy | residual | both | wall_time | cpu_time | iterations ]
|
|
END_DOC
|
|
davidson_criterion = 'residual'
|
|
davidson_threshold = 1.d-6
|
|
END_PROVIDER
|
|
|
|
subroutine davidson_converged(energy,residual,wall,iterations,cpu,N_st,converged)
|
|
implicit none
|
|
BEGIN_DOC
|
|
! True if the Davidson algorithm is converged
|
|
END_DOC
|
|
integer, intent(in) :: N_st, iterations
|
|
logical, intent(out) :: converged
|
|
double precision, intent(in) :: energy(N_st), residual(N_st)
|
|
double precision, intent(in) :: wall, cpu
|
|
double precision :: E(N_st), time
|
|
double precision, allocatable, save :: energy_old(:)
|
|
|
|
if (.not.allocated(energy_old)) then
|
|
allocate(energy_old(N_st))
|
|
energy_old = 0.d0
|
|
endif
|
|
|
|
E = energy - energy_old
|
|
energy_old = energy
|
|
if (davidson_criterion == 'energy') then
|
|
converged = dabs(maxval(E(1:N_st))) < davidson_threshold
|
|
else if (davidson_criterion == 'residual') then
|
|
converged = dabs(maxval(residual(1:N_st))) < davidson_threshold
|
|
else if (davidson_criterion == 'both') then
|
|
converged = dabs(maxval(residual(1:N_st))) + dabs(maxval(E(1:N_st)) ) &
|
|
< davidson_threshold
|
|
else if (davidson_criterion == 'wall_time') then
|
|
call wall_time(time)
|
|
converged = time - wall > davidson_threshold
|
|
else if (davidson_criterion == 'cpu_time') then
|
|
call cpu_time(time)
|
|
converged = time - cpu > davidson_threshold
|
|
else if (davidson_criterion == 'iterations') then
|
|
converged = iterations >= int(davidson_threshold)
|
|
endif
|
|
converged = converged.or.abort_here
|
|
end
|