mirror of
https://github.com/LCPQ/quantum_package
synced 2025-01-05 19:08:52 +01:00
184 lines
6.9 KiB
Fortran
184 lines
6.9 KiB
Fortran
subroutine mrcc_dress(ndetref,ndetnonref,nstates,delta_ij_,delta_ii_)
|
|
use bitmasks
|
|
implicit none
|
|
integer, intent(in) :: ndetref,nstates,ndetnonref
|
|
double precision, intent(inout) :: delta_ii_(ndetref,nstates),delta_ij_(ndetref,ndetnonref,nstates)
|
|
integer :: i,j,k,l,m
|
|
integer :: i_state
|
|
integer :: N_connect_ref
|
|
integer*2,allocatable :: excitation_operators(:,:)
|
|
double precision, allocatable :: amplitudes_phase_less(:)
|
|
double precision, allocatable :: coef_test(:)
|
|
integer(bit_kind), allocatable :: key_test(:,:)
|
|
integer, allocatable :: index_connected(:)
|
|
integer :: i_hole,i_particle,ispin,i_ok,connected_to_ref,index_wf
|
|
integer, allocatable :: idx_vector(:)
|
|
double precision :: phase_ij
|
|
double precision :: dij,phase_la
|
|
double precision :: hij,phase
|
|
integer :: exc(0:2,2,2),degree
|
|
logical :: is_in_wavefunction
|
|
double precision, allocatable :: delta_ij_tmp(:,:,:), delta_ii_tmp(:,:)
|
|
logical, external :: is_in_psi_ref
|
|
|
|
i_state = 1
|
|
allocate(excitation_operators(5,N_det_non_ref))
|
|
allocate(amplitudes_phase_less(N_det_non_ref))
|
|
allocate(index_connected(N_det_non_ref))
|
|
|
|
!$OMP PARALLEL DEFAULT(NONE) &
|
|
!$OMP SHARED(N_det_ref, N_det_non_ref, psi_ref, i_state, &
|
|
!$OMP N_connect_ref,index_connected,psi_non_ref, &
|
|
!$OMP excitation_operators,amplitudes_phase_less, &
|
|
!$OMP psi_non_ref_coef,N_int,lambda_mrcc, &
|
|
!$OMP delta_ii_,delta_ij_,psi_ref_coef,nstates, &
|
|
!$OMP mo_integrals_threshold,idx_non_ref_rev) &
|
|
!$OMP PRIVATE(i,j,k,l,hil,phase_il,exc,degree,t_il, &
|
|
!$OMP key_test,i_ok,phase_la,hij,phase_ij,m, &
|
|
!$OMP dij,idx_vector,delta_ij_tmp, &
|
|
!$OMP delta_ii_tmp,phase)
|
|
allocate(idx_vector(0:N_det_non_ref))
|
|
allocate(key_test(N_int,2))
|
|
allocate(delta_ij_tmp(size(delta_ij_,1),size(delta_ij_,2),nstates))
|
|
allocate(delta_ii_tmp(size(delta_ij_,1),nstates))
|
|
delta_ij_tmp = 0.d0
|
|
delta_ii_tmp = 0.d0
|
|
|
|
do i = 1, N_det_ref
|
|
!$OMP SINGLE
|
|
call get_excitation_operators_for_one_ref(psi_ref(1,1,i),i_state,N_det_non_ref,N_connect_ref,excitation_operators,amplitudes_phase_less,index_connected)
|
|
print*,'N_connect_ref =',N_connect_ref
|
|
print*,'N_det_non_ref =',N_det_non_ref
|
|
!$OMP END SINGLE
|
|
!$OMP BARRIER
|
|
|
|
!$OMP DO SCHEDULE(dynamic)
|
|
do l = 1, N_det_non_ref
|
|
! print *, l, '/', N_det_non_ref
|
|
double precision :: t_il,phase_il,hil
|
|
call i_H_j_phase_out(psi_ref(1,1,i),psi_non_ref(1,1,l),N_int,hil,phase_il,exc,degree)
|
|
t_il = hil * lambda_mrcc(i_state,l)
|
|
if (dabs(t_il) < mo_integrals_threshold) then
|
|
cycle
|
|
endif
|
|
! loop on the non ref determinants
|
|
|
|
do j = 1, N_connect_ref
|
|
! loop on the excitation operators linked to i
|
|
|
|
do k = 1, N_int
|
|
key_test(k,1) = psi_non_ref(k,1,l)
|
|
key_test(k,2) = psi_non_ref(k,2,l)
|
|
enddo
|
|
|
|
! we apply the excitation operator T_I->j
|
|
call apply_excitation_operator(key_test,excitation_operators(1,j),i_ok)
|
|
if(i_ok.ne.1)cycle
|
|
|
|
! we check if such determinant is already in the wave function
|
|
if(is_in_wavefunction(key_test,N_int))cycle
|
|
|
|
! we get the phase for psi_non_ref(l) -> T_I->j |psi_non_ref(l)>
|
|
call get_excitation(psi_non_ref(1,1,l),key_test,exc,degree,phase_la,N_int)
|
|
|
|
! we get the phase T_I->j
|
|
call i_H_j_phase_out(psi_ref(1,1,i),psi_non_ref(1,1,index_connected(j)),N_int,hij,phase_ij,exc,degree)
|
|
|
|
! we compute the contribution to the coef of key_test
|
|
dij = t_il * hij * phase_la *phase_ij *lambda_mrcc(i_state,index_connected(j)) * 0.5d0
|
|
if (dabs(dij) < mo_integrals_threshold) then
|
|
cycle
|
|
endif
|
|
|
|
! we compute the interaction of such determinant with all the non_ref dets
|
|
call filter_connected(psi_non_ref,key_test,N_int,N_det_non_ref,idx_vector)
|
|
|
|
do k = 1, idx_vector(0)
|
|
m = idx_vector(k)
|
|
call i_H_j_phase_out(key_test,psi_non_ref(1,1,m),N_int,hij,phase,exc,degree)
|
|
delta_ij_tmp(i,m,i_state) += hij * dij
|
|
enddo
|
|
|
|
|
|
enddo
|
|
|
|
if(dabs(psi_ref_coef(i,i_state)).le.5.d-5) then
|
|
delta_ii_tmp(i,i_state) -= &
|
|
delta_ij_tmp(i,l,i_state) * psi_non_ref_coef(l,i_state) &
|
|
/ psi_ref_coef(i,i_state)
|
|
endif
|
|
|
|
enddo
|
|
!$OMP END DO
|
|
enddo
|
|
|
|
!$OMP CRITICAL
|
|
delta_ij_ = delta_ij_ + delta_ij_tmp
|
|
delta_ii_ = delta_ii_ + delta_ii_tmp
|
|
!$OMP END CRITICAL
|
|
|
|
deallocate(delta_ii_tmp,delta_ij_tmp)
|
|
deallocate(idx_vector)
|
|
deallocate(key_test)
|
|
!$OMP END PARALLEL
|
|
|
|
deallocate(excitation_operators)
|
|
deallocate(amplitudes_phase_less)
|
|
|
|
end
|
|
|
|
|
|
|
|
subroutine apply_excitation_operator(key_in,excitation_operator,i_ok)
|
|
use bitmasks
|
|
implicit none
|
|
integer(bit_kind), intent(inout) :: key_in
|
|
integer, intent (out) :: i_ok
|
|
integer*2 :: excitation_operator(5)
|
|
integer :: i_particle,i_hole,ispin
|
|
! Do excitation
|
|
if(excitation_operator(5)==1)then ! mono alpha
|
|
i_hole = excitation_operator(1)
|
|
i_particle = excitation_operator(2)
|
|
ispin = 1
|
|
call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok)
|
|
else if (excitation_operator(5)==-1)then ! mono beta
|
|
i_hole = excitation_operator(3)
|
|
i_particle = excitation_operator(4)
|
|
ispin = 2
|
|
call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok)
|
|
else if (excitation_operator(5) == -2 )then ! double beta
|
|
i_hole = excitation_operator(1)
|
|
i_particle = excitation_operator(2)
|
|
ispin = 2
|
|
call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok)
|
|
if(i_ok.ne.1)return
|
|
i_hole = excitation_operator(3)
|
|
i_particle = excitation_operator(4)
|
|
ispin = 2
|
|
call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok)
|
|
|
|
else if (excitation_operator(5) == 2 )then ! double alpha
|
|
i_hole = excitation_operator(1)
|
|
i_particle = excitation_operator(2)
|
|
ispin = 1
|
|
call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok)
|
|
if(i_ok.ne.1)return
|
|
i_hole = excitation_operator(3)
|
|
i_particle = excitation_operator(4)
|
|
ispin = 1
|
|
call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok)
|
|
|
|
else if (excitation_operator(5) == 0 )then ! double alpha/alpha
|
|
i_hole = excitation_operator(1)
|
|
i_particle = excitation_operator(2)
|
|
ispin = 1
|
|
call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok)
|
|
if(i_ok.ne.1)return
|
|
i_hole = excitation_operator(3)
|
|
i_particle = excitation_operator(4)
|
|
ispin = 2
|
|
call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok)
|
|
endif
|
|
end
|