quantum_package/plugins/Symmetry/nuclei.irp.f

123 lines
4.4 KiB
Fortran

subroutine point_to_standard_orientation(point_in,point_out)
implicit none
double precision, intent(in) :: point_in(3)
double precision, intent(out) :: point_out(3)
BEGIN_DOC
! Returns the coordinates of a point in the standard orientation
END_DOC
double precision :: point_tmp(3)
point_tmp(1) = point_in(1) - center_of_mass(1)
point_tmp(2) = point_in(2) - center_of_mass(2)
point_tmp(3) = point_in(3) - center_of_mass(3)
point_out(1) = point_tmp(1)*inertia_tensor_eigenvectors(1,1) + &
point_tmp(2)*inertia_tensor_eigenvectors(2,1) + &
point_tmp(3)*inertia_tensor_eigenvectors(3,1)
point_out(2) = point_tmp(1)*inertia_tensor_eigenvectors(1,2) + &
point_tmp(2)*inertia_tensor_eigenvectors(2,2) + &
point_tmp(3)*inertia_tensor_eigenvectors(3,2)
point_out(3) = point_tmp(1)*inertia_tensor_eigenvectors(1,3) + &
point_tmp(2)*inertia_tensor_eigenvectors(2,3) + &
point_tmp(3)*inertia_tensor_eigenvectors(3,3)
end
subroutine point_to_input_orientation(point_in,point_out)
implicit none
double precision, intent(in) :: point_in(3)
double precision, intent(out) :: point_out(3)
BEGIN_DOC
! Returns the coordinates of a point in the input orientation
END_DOC
double precision :: point_tmp(3)
point_tmp(1) = point_in(1)*inertia_tensor_eigenvectors(1,1) + &
point_in(2)*inertia_tensor_eigenvectors(1,2) + &
point_in(3)*inertia_tensor_eigenvectors(1,3)
point_tmp(2) = point_in(1)*inertia_tensor_eigenvectors(2,1) + &
point_in(2)*inertia_tensor_eigenvectors(2,2) + &
point_in(3)*inertia_tensor_eigenvectors(2,3)
point_tmp(3) = point_in(1)*inertia_tensor_eigenvectors(3,1) + &
point_in(2)*inertia_tensor_eigenvectors(3,2) + &
point_in(3)*inertia_tensor_eigenvectors(3,3)
point_out(1) = point_tmp(1) + center_of_mass(1)
point_out(2) = point_tmp(2) + center_of_mass(2)
point_out(3) = point_tmp(3) + center_of_mass(3)
end
BEGIN_PROVIDER [ double precision, nucl_coord_sym, (nucl_num,3) ]
implicit none
BEGIN_DOC
! Nuclear coordinates in standard orientation
END_DOC
if (mpi_master) then
integer :: i
do i=1,nucl_num
call point_to_standard_orientation(nucl_coord(i,:), nucl_coord_sym(i,:))
enddo
character*(64), parameter :: f = '(A16, 4(1X,F12.6))'
character*(64), parameter :: ft= '(A16, 4(1X,A12 ))'
double precision, parameter :: a0= 0.529177249d0
call write_time(6)
write(6,'(A)') ''
write(6,'(A)') 'Nuclear Coordinates in standard orientation (Angstroms)'
write(6,'(A)') '======================================================='
write(6,'(A)') ''
write(6,ft) &
'================','============','============','============','============'
write(6,*) &
' Atom Charge X Y Z '
write(6,ft) &
'================','============','============','============','============'
do i=1,nucl_num
write(6,f) nucl_label(i), nucl_charge(i), &
nucl_coord_sym(i,1)*a0, &
nucl_coord_sym(i,2)*a0, &
nucl_coord_sym(i,3)*a0
enddo
write(6,ft) &
'================','============','============','============','============'
write(6,'(A)') ''
endif
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST( nucl_coord_sym, 3*nucl_num, MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read nucl_coord_sym with MPI'
endif
IRP_ENDIF
END_PROVIDER
BEGIN_PROVIDER [ double precision, nucl_coord_sym_transp, (3,nucl_num) ]
implicit none
BEGIN_DOC
! Transposed array of nucl_coord
END_DOC
integer :: i, k
nucl_coord_sym_transp = 0.d0
do i=1,nucl_num
nucl_coord_sym_transp(1,i) = nucl_coord_sym(i,1)
nucl_coord_sym_transp(2,i) = nucl_coord_sym(i,2)
nucl_coord_sym_transp(3,i) = nucl_coord_sym(i,3)
enddo
END_PROVIDER