10
0
mirror of https://github.com/LCPQ/quantum_package synced 2025-01-07 03:43:20 +01:00
quantum_package/plugins/mrcepa0/dressing.irp.f

1070 lines
37 KiB
Fortran

use bitmasks
BEGIN_PROVIDER [ double precision, delta_ij_mrcc, (N_states,N_det_non_ref,N_det_ref) ]
&BEGIN_PROVIDER [ double precision, delta_ii_mrcc, (N_states, N_det_ref) ]
&BEGIN_PROVIDER [ double precision, delta_ij_s2_mrcc, (N_states,N_det_non_ref,N_det_ref) ]
&BEGIN_PROVIDER [ double precision, delta_ii_s2_mrcc, (N_states, N_det_ref) ]
use bitmasks
implicit none
integer :: gen, h, p, n, t, i, h1, h2, p1, p2, s1, s2, iproc
integer(bit_kind) :: mask(N_int, 2), omask(N_int, 2)
integer(bit_kind),allocatable :: buf(:,:,:)
logical :: ok
logical, external :: detEq
integer, external :: omp_get_thread_num
delta_ij_mrcc = 0d0
delta_ii_mrcc = 0d0
delta_ij_s2_mrcc = 0d0
delta_ii_s2_mrcc = 0d0
PROVIDE dij
provide hh_shortcut psi_det_size! lambda_mrcc
!$OMP PARALLEL DO default(none) schedule(dynamic) &
!$OMP shared(psi_det_generators, N_det_generators, hh_exists, pp_exists, N_int, hh_shortcut) &
!$OMP shared(N_det_non_ref, N_det_ref, delta_ii_mrcc, delta_ij_mrcc, delta_ii_s2_mrcc, delta_ij_s2_mrcc) &
!$OMP private(h, n, mask, omask, buf, ok, iproc)
do gen= 1, N_det_generators
allocate(buf(N_int, 2, N_det_non_ref))
iproc = omp_get_thread_num() + 1
if(mod(gen, 1000) == 0) print *, "mrcc ", gen, "/", N_det_generators
do h=1, hh_shortcut(0)
call apply_hole_local(psi_det_generators(1,1,gen), hh_exists(1, h), mask, ok, N_int)
if(.not. ok) cycle
omask = 0_bit_kind
if(hh_exists(1, h) /= 0) omask = mask
n = 1
do p=hh_shortcut(h), hh_shortcut(h+1)-1
call apply_particle_local(mask, pp_exists(1, p), buf(1,1,n), ok, N_int)
if(ok) n = n + 1
if(n > N_det_non_ref) stop "Buffer too small in MRCC..."
end do
n = n - 1
if(n /= 0) then
call mrcc_part_dress(delta_ij_mrcc, delta_ii_mrcc, delta_ij_s2_mrcc, delta_ii_s2_mrcc, gen,n,buf,N_int,omask)
endif
end do
deallocate(buf)
end do
!$OMP END PARALLEL DO
END_PROVIDER
! subroutine blit(b1, b2)
! double precision :: b1(N_states,N_det_non_ref,N_det_ref), b2(N_states,N_det_non_ref,N_det_ref)
! b1 = b1 + b2
! end subroutine
subroutine mrcc_part_dress(delta_ij_, delta_ii_,delta_ij_s2_, delta_ii_s2_,i_generator,n_selected,det_buffer,Nint,key_mask)
use bitmasks
implicit none
integer, intent(in) :: i_generator,n_selected, Nint
double precision, intent(inout) :: delta_ij_(N_states,N_det_non_ref,N_det_ref)
double precision, intent(inout) :: delta_ii_(N_states,N_det_ref)
double precision, intent(inout) :: delta_ij_s2_(N_states,N_det_non_ref,N_det_ref)
double precision, intent(inout) :: delta_ii_s2_(N_states,N_det_ref)
integer(bit_kind), intent(in) :: det_buffer(Nint,2,n_selected)
integer :: i,j,k,l,m
integer,allocatable :: idx_alpha(:), degree_alpha(:)
logical :: good, fullMatch
integer(bit_kind),allocatable :: tq(:,:,:)
integer :: N_tq, c_ref ,degree1, degree2, degree
double precision :: hIk, hla, hIl, sla, dIk(N_states), dka(N_states), dIa(N_states), hka
double precision, allocatable :: dIa_hla(:,:), dIa_sla(:,:)
double precision :: haj, phase, phase2
double precision :: f(N_states), ci_inv(N_states)
integer :: exc(0:2,2,2)
integer :: h1,h2,p1,p2,s1,s2
integer(bit_kind) :: tmp_det(Nint,2)
integer :: iint, ipos
integer :: i_state, k_sd, l_sd, i_I, i_alpha
integer(bit_kind),allocatable :: miniList(:,:,:)
integer(bit_kind),intent(in) :: key_mask(Nint, 2)
integer,allocatable :: idx_miniList(:)
integer :: N_miniList, ni, leng
double precision, allocatable :: hij_cache(:), sij_cache(:)
integer(bit_kind), allocatable :: microlist(:,:,:), microlist_zero(:,:,:)
integer, allocatable :: idx_microlist(:), N_microlist(:), ptr_microlist(:), idx_microlist_zero(:)
integer :: mobiles(2), smallerlist
logical, external :: detEq, is_generable
!double precision, external :: get_dij, get_dij_index
leng = max(N_det_generators, N_det_non_ref)
allocate(miniList(Nint, 2, leng), tq(Nint,2,n_selected), idx_minilist(leng), hij_cache(N_det_non_ref), sij_cache(N_det_non_ref))
allocate(idx_alpha(0:psi_det_size), degree_alpha(psi_det_size))
!create_minilist_find_previous(key_mask, fullList, miniList, N_fullList, N_miniList, fullMatch, Nint)
call create_minilist_find_previous(key_mask, psi_det_generators, miniList, i_generator-1, N_miniList, fullMatch, Nint)
! if(fullMatch) then
! return
! end if
allocate(ptr_microlist(0:mo_tot_num*2+1), &
N_microlist(0:mo_tot_num*2) )
allocate( microlist(Nint,2,N_minilist*4), &
idx_microlist(N_minilist*4))
if(key_mask(1,1) /= 0) then
call create_microlist(miniList, N_minilist, key_mask, microlist, idx_microlist, N_microlist, ptr_microlist, Nint)
call filter_tq_micro(i_generator,n_selected,det_buffer,Nint,tq,N_tq,microlist,ptr_microlist,N_microlist,key_mask)
else
call filter_tq(i_generator,n_selected,det_buffer,Nint,tq,N_tq,miniList,N_minilist)
end if
deallocate(microlist, idx_microlist)
allocate (dIa_hla(N_states,N_det_non_ref), dIa_sla(N_states,N_det_non_ref))
! |I>
! |alpha>
if(N_tq > 0) then
call create_minilist(key_mask, psi_non_ref, miniList, idx_minilist, N_det_non_ref, N_minilist, Nint)
if(N_minilist == 0) return
if(key_mask(1,1) /= 0) then !!!!!!!!!!! PAS GENERAL !!!!!!!!!
allocate(microlist_zero(Nint,2,N_minilist), idx_microlist_zero(N_minilist))
allocate( microlist(Nint,2,N_minilist*4), &
idx_microlist(N_minilist*4))
call create_microlist(miniList, N_minilist, key_mask, microlist, idx_microlist, N_microlist, ptr_microlist, Nint)
do i=0,mo_tot_num*2
do k=ptr_microlist(i),ptr_microlist(i+1)-1
idx_microlist(k) = idx_minilist(idx_microlist(k))
end do
end do
do l=1,N_microlist(0)
do k=1,Nint
microlist_zero(k,1,l) = microlist(k,1,l)
microlist_zero(k,2,l) = microlist(k,2,l)
enddo
idx_microlist_zero(l) = idx_microlist(l)
enddo
end if
end if
do i_alpha=1,N_tq
if(key_mask(1,1) /= 0) then
call getMobiles(tq(1,1,i_alpha), key_mask, mobiles, Nint)
if(N_microlist(mobiles(1)) < N_microlist(mobiles(2))) then
smallerlist = mobiles(1)
else
smallerlist = mobiles(2)
end if
do l=0,N_microlist(smallerlist)-1
microlist_zero(:,:,ptr_microlist(1) + l) = microlist(:,:,ptr_microlist(smallerlist) + l)
idx_microlist_zero(ptr_microlist(1) + l) = idx_microlist(ptr_microlist(smallerlist) + l)
end do
call get_excitation_degree_vector(microlist_zero,tq(1,1,i_alpha),degree_alpha,Nint,N_microlist(smallerlist)+N_microlist(0),idx_alpha)
do j=1,idx_alpha(0)
idx_alpha(j) = idx_microlist_zero(idx_alpha(j))
end do
else
call get_excitation_degree_vector(miniList,tq(1,1,i_alpha),degree_alpha,Nint,N_minilist,idx_alpha)
do j=1,idx_alpha(0)
idx_alpha(j) = idx_miniList(idx_alpha(j))
end do
end if
if (perturbative_triples) then
double precision :: Delta_E_inv(N_states)
double precision, external :: diag_H_mat_elem
do i_state=1,N_states
Delta_E_inv(i_state) = 1.d0 / (psi_ref_energy_diagonalized(i_state) - diag_H_mat_elem(tq(1,1,i_alpha),N_int) )
enddo
endif
do l_sd=1,idx_alpha(0)
k_sd = idx_alpha(l_sd)
call i_h_j(tq(1,1,i_alpha),psi_non_ref(1,1,idx_alpha(l_sd)),Nint,hij_cache(k_sd))
call get_s2(tq(1,1,i_alpha),psi_non_ref(1,1,idx_alpha(l_sd)),Nint,sij_cache(k_sd))
enddo
! |I>
do i_I=1,N_det_ref
! Find triples and quadruple grand parents
call get_excitation_degree(tq(1,1,i_alpha),psi_ref(1,1,i_I),degree1,Nint)
if (degree1 > 4) then
cycle
endif
do i_state=1,N_states
dIa(i_state) = 0.d0
enddo
! <I| <> |alpha>
do k_sd=1,idx_alpha(0)
call get_excitation_degree(psi_ref(1,1,i_I),psi_non_ref(1,1,idx_alpha(k_sd)),degree,Nint)
if (degree > 2) then
cycle
endif
! <I| /k\ |alpha>
! |l> = Exc(k -> alpha) |I>
call get_excitation(psi_non_ref(1,1,idx_alpha(k_sd)),tq(1,1,i_alpha),exc,degree2,phase,Nint)
call decode_exc(exc,degree2,h1,p1,h2,p2,s1,s2)
do k=1,N_int
tmp_det(k,1) = psi_ref(k,1,i_I)
tmp_det(k,2) = psi_ref(k,2,i_I)
enddo
logical :: ok
call apply_excitation(psi_ref(1,1,i_I), exc, tmp_det, ok, Nint)
if (perturbative_triples) then
ok = ok .and. ( (degree2 /= 1).and.(degree /=1) )
endif
do i_state=1,N_states
dIK(i_state) = dij(i_I, idx_alpha(k_sd), i_state)
enddo
! <I| \l/ |alpha>
do i_state=1,N_states
dka(i_state) = 0.d0
enddo
if (ok) then
do l_sd=k_sd+1,idx_alpha(0)
call get_excitation_degree(tmp_det,psi_non_ref(1,1,idx_alpha(l_sd)),degree,Nint)
if (degree == 0) then
call get_excitation(psi_ref(1,1,i_I),psi_non_ref(1,1,idx_alpha(l_sd)),exc,degree,phase2,Nint)
do i_state=1,N_states
dka(i_state) = dij(i_I, idx_alpha(l_sd), i_state) * phase * phase2
enddo
exit
endif
enddo
else if (perturbative_triples) then
hka = hij_cache(idx_alpha(k_sd))
do i_state=1,N_states
dka(i_state) = hka * Delta_E_inv(i_state)
enddo
endif
do i_state=1,N_states
dIa(i_state) = dIa(i_state) + dIk(i_state) * dka(i_state)
enddo
enddo
do i_state=1,N_states
ci_inv(i_state) = psi_ref_coef_inv(i_I,i_state)
enddo
do l_sd=1,idx_alpha(0)
k_sd = idx_alpha(l_sd)
hla = hij_cache(k_sd)
sla = sij_cache(k_sd)
do i_state=1,N_states
dIa_hla(i_state,k_sd) = dIa(i_state) * hla
dIa_sla(i_state,k_sd) = dIa(i_state) * sla
enddo
enddo
do i_state=1,N_states
if(dabs(psi_ref_coef(i_I,i_state)).ge.1.d-3)then
do l_sd=1,idx_alpha(0)
k_sd = idx_alpha(l_sd)
!$OMP ATOMIC
delta_ij_(i_state,k_sd,i_I) = delta_ij_(i_state,k_sd,i_I) + dIa_hla(i_state,k_sd)
!$OMP ATOMIC
delta_ii_(i_state,i_I) = delta_ii_(i_state,i_I) - dIa_hla(i_state,k_sd) * ci_inv(i_state) * psi_non_ref_coef_transp(i_state,k_sd)
!$OMP ATOMIC
delta_ij_s2_(i_state,k_sd,i_I) = delta_ij_s2_(i_state,k_sd,i_I) + dIa_sla(i_state,k_sd)
!$OMP ATOMIC
delta_ii_s2_(i_state,i_I) = delta_ii_s2_(i_state,i_I) - dIa_sla(i_state,k_sd) * ci_inv(i_state) * psi_non_ref_coef_transp(i_state,k_sd)
enddo
else
delta_ii_(i_state,i_I) = 0.d0
do l_sd=1,idx_alpha(0)
k_sd = idx_alpha(l_sd)
!$OMP ATOMIC
delta_ij_(i_state,k_sd,i_I) = delta_ij_(i_state,k_sd,i_I) + 0.5d0*dIa_hla(i_state,k_sd)
!$OMP ATOMIC
delta_ij_s2_(i_state,k_sd,i_I) = delta_ij_s2_(i_state,k_sd,i_I) + 0.5d0*dIa_sla(i_state,k_sd)
enddo
endif
enddo
enddo
enddo
deallocate (dIa_hla,dIa_sla,hij_cache,sij_cache)
deallocate(miniList, idx_miniList)
end
BEGIN_PROVIDER [ double precision, delta_ij, (N_states,N_det_non_ref,N_det_ref) ]
&BEGIN_PROVIDER [ double precision, delta_ii, (N_states, N_det_ref) ]
&BEGIN_PROVIDER [ double precision, delta_ij_s2, (N_states,N_det_non_ref,N_det_ref) ]
&BEGIN_PROVIDER [ double precision, delta_ii_s2, (N_states, N_det_ref) ]
use bitmasks
implicit none
integer :: i, j, i_state
!mrmode : 1=mrcepa0, 2=mrsc2 add, 3=mrcc
if(mrmode == 3) then
do i = 1, N_det_ref
do i_state = 1, N_states
delta_ii(i_state,i)= delta_ii_mrcc(i_state,i)
delta_ii_s2(i_state,i)= delta_ii_s2_mrcc(i_state,i)
enddo
do j = 1, N_det_non_ref
do i_state = 1, N_states
delta_ij(i_state,j,i) = delta_ij_mrcc(i_state,j,i)
delta_ij_s2(i_state,j,i) = delta_ij_s2_mrcc(i_state,j,i)
enddo
end do
end do
! =-=-= BEGIN STATE AVERAGE
! do i = 1, N_det_ref
! delta_ii(:,i)= delta_ii_mrcc(1,i)
! delta_ii_s2(:,i)= delta_ii_s2_mrcc(1,i)
! do i_state = 2, N_states
! delta_ii(:,i) += delta_ii_mrcc(i_state,i)
! delta_ii_s2(:,i) += delta_ii_s2_mrcc(i_state,i)
! enddo
! do j = 1, N_det_non_ref
! delta_ij(:,j,i) = delta_ij_mrcc(1,j,i)
! delta_ij_s2(:,j,i) = delta_ij_s2_mrcc(1,j,i)
! do i_state = 2, N_states
! delta_ij(:,j,i) += delta_ij_mrcc(i_state,j,i)
! delta_ij_s2(:,j,i) += delta_ij_s2_mrcc(i_state,j,i)
! enddo
! end do
! end do
! delta_ij = delta_ij * (1.d0/dble(N_states))
! delta_ii = delta_ii * (1.d0/dble(N_states))
! =-=-= END STATE AVERAGE
!
! do i = 1, N_det_ref
! delta_ii(i_state,i)= delta_mrcepa0_ii(i,i_state) - delta_sub_ii(i,i_state)
! do j = 1, N_det_non_ref
! delta_ij(i_state,j,i) = delta_mrcepa0_ij(i,j,i_state) - delta_sub_ij(i,j,i_state)
! end do
! end do
else if(mrmode == 2) then
do i = 1, N_det_ref
do i_state = 1, N_states
delta_ii(i_state,i)= delta_ii_old(i_state,i)
delta_ii_s2(i_state,i)= delta_ii_s2_old(i_state,i)
enddo
do j = 1, N_det_non_ref
do i_state = 1, N_states
delta_ij(i_state,j,i) = delta_ij_old(i_state,j,i)
delta_ij_s2(i_state,j,i) = delta_ij_s2_old(i_state,j,i)
enddo
end do
end do
else if(mrmode == 1) then
do i = 1, N_det_ref
do i_state = 1, N_states
delta_ii(i_state,i)= delta_mrcepa0_ii(i,i_state)
delta_ii_s2(i_state,i)= delta_mrcepa0_ii_s2(i,i_state)
enddo
do j = 1, N_det_non_ref
do i_state = 1, N_states
delta_ij(i_state,j,i) = delta_mrcepa0_ij(i,j,i_state)
delta_ij_s2(i_state,j,i) = delta_mrcepa0_ij_s2(i,j,i_state)
enddo
end do
end do
else
stop "invalid mrmode"
end if
END_PROVIDER
BEGIN_PROVIDER [ integer, HP, (2,N_det_non_ref) ]
integer :: i
do i=1,N_det_non_ref
call getHP(psi_non_ref(1,1,i), HP(1,i), HP(2,i), N_int)
end do
END_PROVIDER
BEGIN_PROVIDER [ integer, cepa0_shortcut, (0:N_det_non_ref+1) ]
&BEGIN_PROVIDER [ integer, det_cepa0_idx, (N_det_non_ref) ]
&BEGIN_PROVIDER [ integer(bit_kind), det_cepa0_active, (N_int,2,N_det_non_ref) ]
&BEGIN_PROVIDER [ integer(bit_kind), det_ref_active, (N_int,2,N_det_ref) ]
&BEGIN_PROVIDER [ integer(bit_kind), active_sorb, (N_int,2) ]
&BEGIN_PROVIDER [ integer(bit_kind), det_cepa0, (N_int,2,N_det_non_ref) ]
&BEGIN_PROVIDER [ integer, nlink, (N_det_ref) ]
&BEGIN_PROVIDER [ integer, linked, (N_det_non_ref,N_det_ref) ]
&BEGIN_PROVIDER [ integer, blokMwen, (N_det_non_ref,N_det_ref) ]
&BEGIN_PROVIDER [ double precision, searchance, (N_det_ref) ]
&BEGIN_PROVIDER [ integer, child_num, (N_det_non_ref,N_det_ref) ]
use bitmasks
implicit none
integer(bit_kind),allocatable :: det_noactive(:,:,:)
integer, allocatable :: shortcut(:), idx(:)
integer(bit_kind) :: nonactive_sorb(N_int,2), det(N_int, 2)
integer i, II, j, k, n, ni, blok, degree
logical, external :: detEq
allocate(det_noactive(N_int, 2, N_det_non_ref))
allocate(idx(N_det_non_ref), shortcut(0:N_det_non_ref+1))
print *, "pre start"
active_sorb(:,:) = 0_8
nonactive_sorb(:,:) = not(0_8)
if(N_det_ref > 1) then
do i=1, N_det_ref
do k=1, N_int
active_sorb(k,1) = ior(psi_ref(k,1,i), active_sorb(k,1))
active_sorb(k,2) = ior(psi_ref(k,2,i), active_sorb(k,2))
nonactive_sorb(k,1) = iand(psi_ref(k,1,i), nonactive_sorb(k,1))
nonactive_sorb(k,2) = iand(psi_ref(k,2,i), nonactive_sorb(k,2))
end do
end do
do k=1, N_int
active_sorb(k,1) = iand(active_sorb(k,1), not(nonactive_sorb(k,1)))
active_sorb(k,2) = iand(active_sorb(k,2), not(nonactive_sorb(k,2)))
end do
end if
do i=1, N_det_non_ref
do k=1, N_int
det_noactive(k,1,i) = iand(psi_non_ref(k,1,i), not(active_sorb(k,1)))
det_noactive(k,2,i) = iand(psi_non_ref(k,2,i), not(active_sorb(k,2)))
end do
end do
call sort_dets_ab(det_noactive, det_cepa0_idx, cepa0_shortcut, N_det_non_ref, N_int)
do i=1,N_det_non_ref
det_cepa0(:,:,i) = psi_non_ref(:,:,det_cepa0_idx(i))
end do
cepa0_shortcut(0) = 1
cepa0_shortcut(1) = 1
do i=2,N_det_non_ref
if(.not. detEq(det_noactive(1,1,i), det_noactive(1,1,i-1), N_int)) then
cepa0_shortcut(0) += 1
cepa0_shortcut(cepa0_shortcut(0)) = i
end if
end do
cepa0_shortcut(cepa0_shortcut(0)+1) = N_det_non_ref+1
if(.true.) then
do i=1,cepa0_shortcut(0)
n = cepa0_shortcut(i+1) - cepa0_shortcut(i)
call sort_dets_ab(det_cepa0(1,1,cepa0_shortcut(i)), idx, shortcut, n, N_int)
do k=1,n
idx(k) = det_cepa0_idx(cepa0_shortcut(i)-1+idx(k))
end do
det_cepa0_idx(cepa0_shortcut(i):cepa0_shortcut(i)+n-1) = idx(:n)
end do
end if
do i=1,N_det_ref
do k=1, N_int
det_ref_active(k,1,i) = iand(psi_ref(k,1,i), active_sorb(k,1))
det_ref_active(k,2,i) = iand(psi_ref(k,2,i), active_sorb(k,2))
end do
end do
do i=1,N_det_non_ref
do k=1, N_int
det_cepa0_active(k,1,i) = iand(psi_non_ref(k,1,det_cepa0_idx(i)), active_sorb(k,1))
det_cepa0_active(k,2,i) = iand(psi_non_ref(k,2,det_cepa0_idx(i)), active_sorb(k,2))
end do
end do
do i=1,N_det_non_ref
if(.not. detEq(psi_non_ref(1,1,det_cepa0_idx(i)), det_cepa0(1,1,i),N_int)) stop "STOOOP"
end do
searchance = 0d0
child_num = 0
do J = 1, N_det_ref
nlink(J) = 0
do blok=1,cepa0_shortcut(0)
do k=cepa0_shortcut(blok), cepa0_shortcut(blok+1)-1
call get_excitation_degree(psi_ref(1,1,J),det_cepa0(1,1,k),degree,N_int)
if(degree <= 2) then
nlink(J) += 1
linked(nlink(J),J) = k
child_num(k, J) = nlink(J)
blokMwen(nlink(J),J) = blok
searchance(J) += 1d0 + log(dfloat(cepa0_shortcut(blok+1) - cepa0_shortcut(blok)))
end if
end do
end do
end do
print *, "pre done"
END_PROVIDER
! BEGIN_PROVIDER [ double precision, delta_cas, (N_det_ref, N_det_ref, N_states) ]
! use bitmasks
! implicit none
! integer :: i,j,k
! double precision :: Hjk, Hki, Hij, pre(N_det_ref), wall
! integer :: i_state, degree, npre, ipre(N_det_ref), npres(N_det_ref)
!
! ! provide lambda_mrcc
! npres = 0
! delta_cas = 0d0
! call wall_time(wall)
! print *, "dcas ", wall
! do i_state = 1, N_states
! !!$OMP PARALLEL DO default(none) schedule(dynamic) private(pre,npre,ipre,j,k,Hjk,Hki,degree) shared(npres,lambda_mrcc,i_state, N_det_non_ref,psi_ref, psi_non_ref,N_int,delta_cas,N_det_ref)
! do k=1,N_det_non_ref
! if(lambda_mrcc(i_state, k) == 0d0) cycle
! npre = 0
! do i=1,N_det_ref
! call i_h_j(psi_non_ref(1,1,k),psi_ref(1,1,i), N_int,Hki)
! if(Hki /= 0d0) then
! !!$OMP ATOMIC
! npres(i) += 1
! npre += 1
! ipre(npre) = i
! pre(npre) = Hki
! end if
! end do
!
!
! do i=1,npre
! do j=1,i
! !!$OMP ATOMIC
! delta_cas(ipre(i),ipre(j),i_state) += pre(i) * pre(j) * lambda_mrcc(i_state, k)
! end do
! end do
! end do
! !!$OMP END PARALLEL DO
! npre=0
! do i=1,N_det_ref
! npre += npres(i)
! end do
! !stop
! do i=1,N_det_ref
! do j=1,i
! delta_cas(j,i,i_state) = delta_cas(i,j,i_state)
! end do
! end do
! end do
!
! call wall_time(wall)
! print *, "dcas", wall
! ! stop
! END_PROVIDER
BEGIN_PROVIDER [ double precision, delta_cas, (N_det_ref, N_det_ref, N_states) ]
&BEGIN_PROVIDER [ double precision, delta_cas_s2, (N_det_ref, N_det_ref, N_states) ]
use bitmasks
implicit none
integer :: i,j,k
double precision :: Sjk,Hjk, Hki, Hij
!double precision, external :: get_dij
integer i_state, degree
provide lambda_mrcc dIj
do i_state = 1, N_states
!$OMP PARALLEL DO default(none) schedule(dynamic) private(j,k,Sjk,Hjk,Hki,degree) shared(lambda_mrcc,i_state, N_det_non_ref,psi_ref, psi_non_ref,N_int,delta_cas,delta_cas_s2,N_det_ref,dij)
do i=1,N_det_ref
do j=1,i
call get_excitation_degree(psi_ref(1,1,i), psi_ref(1,1,j), degree, N_int)
delta_cas(i,j,i_state) = 0d0
delta_cas_s2(i,j,i_state) = 0d0
do k=1,N_det_non_ref
call i_h_j(psi_ref(1,1,j), psi_non_ref(1,1,k),N_int,Hjk)
call get_s2(psi_ref(1,1,j), psi_non_ref(1,1,k),N_int,Sjk)
delta_cas(i,j,i_state) += Hjk * dij(i, k, i_state) ! * Hki * lambda_mrcc(i_state, k)
delta_cas_s2(i,j,i_state) += Sjk * dij(i, k, i_state) ! * Ski * lambda_mrcc(i_state, k)
end do
delta_cas(j,i,i_state) = delta_cas(i,j,i_state)
delta_cas_s2(j,i,i_state) = delta_cas_s2(i,j,i_state)
end do
end do
!$OMP END PARALLEL DO
end do
END_PROVIDER
logical function isInCassd(a,Nint)
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: a(Nint,2)
integer(bit_kind) :: inac, virt
integer :: ni, i, deg
isInCassd = .false.
deg = 0
do i=1,2
do ni=1,Nint
virt = iand(not(HF_bitmask(ni,i)), not(active_sorb(ni,i)))
deg += popcnt(iand(virt, a(ni,i)))
if(deg > 2) return
end do
end do
deg = 0
do i=1,2
do ni=1,Nint
inac = iand(HF_bitmask(ni,i), not(active_sorb(ni,i)))
deg += popcnt(xor(iand(inac,a(ni,i)), inac))
if(deg > 2) return
end do
end do
isInCassd = .true.
end function
subroutine getHP(a,h,p,Nint)
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: a(Nint,2)
integer, intent(out) :: h, p
integer(bit_kind) :: inac, virt
integer :: ni, i, deg
!isInCassd = .false.
h = 0
p = 0
deg = 0
lp : do i=1,2
do ni=1,Nint
virt = iand(not(HF_bitmask(ni,i)), not(active_sorb(ni,i)))
deg += popcnt(iand(virt, a(ni,i)))
if(deg > 2) exit lp
end do
end do lp
p = deg
deg = 0
lh : do i=1,2
do ni=1,Nint
inac = iand(HF_bitmask(ni,i), not(active_sorb(ni,i)))
deg += popcnt(xor(iand(inac,a(ni,i)), inac))
if(deg > 2) exit lh
end do
end do lh
h = deg
!isInCassd = .true.
end function
BEGIN_PROVIDER [ double precision, delta_mrcepa0_ij, (N_det_ref,N_det_non_ref,N_states) ]
&BEGIN_PROVIDER [ double precision, delta_mrcepa0_ii, (N_det_ref,N_states) ]
&BEGIN_PROVIDER [ double precision, delta_mrcepa0_ij_s2, (N_det_ref,N_det_non_ref,N_states) ]
&BEGIN_PROVIDER [ double precision, delta_mrcepa0_ii_s2, (N_det_ref,N_states) ]
use bitmasks
implicit none
integer :: i_state, i, i_I, J, k, degree, degree2, m, l, deg, ni
integer :: p1,p2,h1,h2,s1,s2, p1_,p2_,h1_,h2_,s1_,s2_, sortRefIdx(N_det_ref)
logical :: ok
double precision :: phase_iI, phase_Ik, phase_Jl, phase_IJ, phase_al, diI, hIi, hJi, delta_JI, dkI(1), HkI, ci_inv(1), dia_hla(1)
double precision :: contrib, contrib2, contrib_s2, contrib2_s2, HIIi, HJk, wall
integer, dimension(0:2,2,2) :: exc_iI, exc_Ik, exc_IJ
integer(bit_kind) :: det_tmp(N_int, 2), made_hole(N_int,2), made_particle(N_int,2), myActive(N_int,2)
integer(bit_kind),allocatable :: sortRef(:,:,:)
integer, allocatable :: idx_sorted_bit(:)
integer, external :: get_index_in_psi_det_sorted_bit, searchDet
logical, external :: is_in_wavefunction, detEq
!double precision, external :: get_dij
integer :: II, blok
integer*8, save :: notf = 0
call wall_time(wall)
allocate(idx_sorted_bit(N_det), sortRef(N_int,2,N_det_ref))
sortRef(:,:,:) = det_ref_active(:,:,:)
call sort_det(sortRef, sortRefIdx, N_det_ref, N_int)
idx_sorted_bit(:) = -1
do i=1,N_det_non_ref
idx_sorted_bit(get_index_in_psi_det_sorted_bit(psi_non_ref(1,1,i), N_int)) = i
enddo
! To provide everything
contrib = dij(1, 1, 1)
delta_mrcepa0_ii(:,:) = 0d0
delta_mrcepa0_ij(:,:,:) = 0d0
delta_mrcepa0_ii_s2(:,:) = 0d0
delta_mrcepa0_ij_s2(:,:,:) = 0d0
do i_state = 1, N_states
!$OMP PARALLEL DO default(none) schedule(dynamic) shared(delta_mrcepa0_ij, delta_mrcepa0_ii, delta_mrcepa0_ij_s2, delta_mrcepa0_ii_s2) &
!$OMP private(m,i,II,J,k,degree,myActive,made_hole,made_particle,hjk,contrib,contrib2,contrib_s2,contrib2_s2) &
!$OMP shared(active_sorb, psi_non_ref, psi_non_ref_coef, psi_ref, psi_ref_coef, cepa0_shortcut, det_cepa0_active) &
!$OMP shared(N_det_ref, N_det_non_ref,N_int,det_cepa0_idx,lambda_mrcc,det_ref_active, delta_cas, delta_cas_s2) &
!$OMP shared(notf,i_state, sortRef, sortRefIdx, dij)
do blok=1,cepa0_shortcut(0)
do i=cepa0_shortcut(blok), cepa0_shortcut(blok+1)-1
do II=1,N_det_ref
call get_excitation_degree(psi_ref(1,1,II),psi_non_ref(1,1,det_cepa0_idx(i)),degree,N_int)
if (degree > 2 ) cycle
do ni=1,N_int
made_hole(ni,1) = iand(det_ref_active(ni,1,II), xor(det_cepa0_active(ni,1,i), det_ref_active(ni,1,II)))
made_hole(ni,2) = iand(det_ref_active(ni,2,II), xor(det_cepa0_active(ni,2,i), det_ref_active(ni,2,II)))
made_particle(ni,1) = iand(det_cepa0_active(ni,1,i), xor(det_cepa0_active(ni,1,i), det_ref_active(ni,1,II)))
made_particle(ni,2) = iand(det_cepa0_active(ni,2,i), xor(det_cepa0_active(ni,2,i), det_ref_active(ni,2,II)))
end do
kloop: do k=cepa0_shortcut(blok), cepa0_shortcut(blok+1)-1 !i
!if(lambda_mrcc(i_state, det_cepa0_idx(k)) == 0d0) cycle
do ni=1,N_int
if(iand(made_hole(ni,1), det_cepa0_active(ni,1,k)) /= 0) cycle kloop
if(iand(made_particle(ni,1), det_cepa0_active(ni,1,k)) /= made_particle(ni,1)) cycle kloop
if(iand(made_hole(ni,2), det_cepa0_active(ni,2,k)) /= 0) cycle kloop
if(iand(made_particle(ni,2), det_cepa0_active(ni,2,k)) /= made_particle(ni,2)) cycle kloop
end do
do ni=1,N_int
myActive(ni,1) = xor(det_cepa0_active(ni,1,k), made_hole(ni,1))
myActive(ni,1) = xor(myActive(ni,1), made_particle(ni,1))
myActive(ni,2) = xor(det_cepa0_active(ni,2,k), made_hole(ni,2))
myActive(ni,2) = xor(myActive(ni,2), made_particle(ni,2))
end do
j = searchDet(sortRef, myActive, N_det_ref, N_int)
if(j == -1) then
cycle
end if
j = sortRefIdx(j)
!$OMP ATOMIC
notf = notf+1
! call i_h_j(psi_non_ref(1,1,det_cepa0_idx(k)),psi_ref(1,1,J),N_int,HJk)
contrib = delta_cas(II, J, i_state) * dij(J, det_cepa0_idx(k), i_state)
contrib_s2 = delta_cas_s2(II, J, i_state) * dij(J, det_cepa0_idx(k), i_state)
if(dabs(psi_ref_coef(J,i_state)).ge.1.d-3) then
contrib2 = contrib / psi_ref_coef(J, i_state) * psi_non_ref_coef(det_cepa0_idx(i),i_state)
contrib2_s2 = contrib_s2 / psi_ref_coef(J, i_state) * psi_non_ref_coef(det_cepa0_idx(i),i_state)
!$OMP ATOMIC
delta_mrcepa0_ii(J,i_state) -= contrib2
delta_mrcepa0_ii_s2(J,i_state) -= contrib2_s2
else
contrib = contrib * 0.5d0
contrib_s2 = contrib_s2 * 0.5d0
end if
!$OMP ATOMIC
delta_mrcepa0_ij(J, det_cepa0_idx(i), i_state) += contrib
delta_mrcepa0_ij_s2(J, det_cepa0_idx(i), i_state) += contrib_s2
end do kloop
end do
end do
end do
!$OMP END PARALLEL DO
end do
deallocate(idx_sorted_bit)
call wall_time(wall)
print *, "cepa0", wall, notf
END_PROVIDER
BEGIN_PROVIDER [ double precision, delta_sub_ij, (N_det_ref,N_det_non_ref,N_states) ]
&BEGIN_PROVIDER [ double precision, delta_sub_ii, (N_det_ref, N_states) ]
use bitmasks
implicit none
integer :: i_state, i, i_I, J, k, degree, degree2, l, deg, ni
integer :: p1,p2,h1,h2,s1,s2, p1_,p2_,h1_,h2_,s1_,s2_
logical :: ok
double precision :: phase_Ji, phase_Ik, phase_Ii
double precision :: contrib, contrib2, delta_IJk, HJk, HIk, HIl
integer, dimension(0:2,2,2) :: exc_Ik, exc_Ji, exc_Ii
integer(bit_kind) :: det_tmp(N_int, 2), det_tmp2(N_int, 2)
integer, allocatable :: idx_sorted_bit(:)
integer, external :: get_index_in_psi_det_sorted_bit
integer :: II, blok
provide delta_cas lambda_mrcc
allocate(idx_sorted_bit(N_det))
idx_sorted_bit(:) = -1
do i=1,N_det_non_ref
idx_sorted_bit(get_index_in_psi_det_sorted_bit(psi_non_ref(1,1,i), N_int)) = i
enddo
do i_state = 1, N_states
delta_sub_ij(:,:,:) = 0d0
delta_sub_ii(:,:) = 0d0
provide mo_bielec_integrals_in_map
!$OMP PARALLEL DO default(none) schedule(dynamic,10) shared(delta_sub_ij, delta_sub_ii) &
!$OMP private(i, J, k, degree, degree2, l, deg, ni) &
!$OMP private(p1,p2,h1,h2,s1,s2, p1_,p2_,h1_,h2_,s1_,s2_) &
!$OMP private(ok, phase_Ji, phase_Ik, phase_Ii, contrib2, contrib, delta_IJk, HJk, HIk, HIl, exc_Ik, exc_Ji, exc_Ii) &
!$OMP private(det_tmp, det_tmp2, II, blok) &
!$OMP shared(idx_sorted_bit, N_det_non_ref, N_det_ref, N_int, psi_non_ref, psi_non_ref_coef, psi_ref, psi_ref_coef) &
!$OMP shared(i_state,lambda_mrcc, hf_bitmask, active_sorb)
do i=1,N_det_non_ref
if(mod(i,1000) == 0) print *, i, "/", N_det_non_ref
do J=1,N_det_ref
call get_excitation(psi_ref(1,1,J),psi_non_ref(1,1,i),exc_Ji,degree,phase_Ji,N_int)
if(degree == -1) cycle
do II=1,N_det_ref
call apply_excitation(psi_ref(1,1,II),exc_Ji,det_tmp,ok,N_int)
if(.not. ok) cycle
l = get_index_in_psi_det_sorted_bit(det_tmp, N_int)
if(l == 0) cycle
l = idx_sorted_bit(l)
call i_h_j(psi_ref(1,1,II), det_tmp, N_int, HIl)
do k=1,N_det_non_ref
if(lambda_mrcc(i_state, k) == 0d0) cycle
call get_excitation(psi_ref(1,1,II),psi_non_ref(1,1,k),exc_Ik,degree2,phase_Ik,N_int)
det_tmp(:,:) = 0_bit_kind
det_tmp2(:,:) = 0_bit_kind
ok = .true.
do ni=1,N_int
det_tmp(ni,1) = iand(xor(HF_bitmask(ni,1), psi_non_ref(ni,1,k)), not(active_sorb(ni,1)))
det_tmp(ni,2) = iand(xor(HF_bitmask(ni,1), psi_non_ref(ni,1,i)), not(active_sorb(ni,1)))
ok = ok .and. (popcnt(det_tmp(ni,1)) + popcnt(det_tmp(ni,2)) == popcnt(xor(det_tmp(ni,1), det_tmp(ni,2))))
det_tmp(ni,1) = iand(xor(HF_bitmask(ni,2), psi_non_ref(ni,2,k)), not(active_sorb(ni,2)))
det_tmp(ni,2) = iand(xor(HF_bitmask(ni,2), psi_non_ref(ni,2,i)), not(active_sorb(ni,2)))
ok = ok .and. (popcnt(det_tmp(ni,1)) + popcnt(det_tmp(ni,2)) == popcnt(xor(det_tmp(ni,1), det_tmp(ni,2))))
end do
if(ok) cycle
call i_h_j(psi_ref(1,1,J), psi_non_ref(1,1,k), N_int, HJk)
call i_h_j(psi_ref(1,1,II), psi_non_ref(1,1,k), N_int, HIk)
if(HJk == 0) cycle
!assert HIk == 0
delta_IJk = HJk * HIk * lambda_mrcc(i_state, k)
call apply_excitation(psi_non_ref(1,1,i),exc_Ik,det_tmp,ok,N_int)
if(ok) cycle
contrib = delta_IJk * HIl * lambda_mrcc(i_state,l)
if(dabs(psi_ref_coef(II,i_state)).ge.1.d-3) then
contrib2 = contrib / psi_ref_coef(II, i_state) * psi_non_ref_coef(l,i_state)
!$OMP ATOMIC
delta_sub_ii(II,i_state) -= contrib2
else
contrib = contrib * 0.5d0
endif
!$OMP ATOMIC
delta_sub_ij(II, i, i_state) += contrib
end do
end do
end do
end do
!$OMP END PARALLEL DO
end do
deallocate(idx_sorted_bit)
END_PROVIDER
subroutine set_det_bit(det, p, s)
implicit none
integer(bit_kind),intent(inout) :: det(N_int, 2)
integer, intent(in) :: p, s
integer :: ni, pos
ni = (p-1)/bit_kind_size + 1
pos = mod(p-1, bit_kind_size)
det(ni,s) = ibset(det(ni,s), pos)
end subroutine
BEGIN_PROVIDER [ double precision, h_cache, (N_det_ref,N_det_non_ref) ]
&BEGIN_PROVIDER [ double precision, s2_cache, (N_det_ref,N_det_non_ref) ]
implicit none
integer :: i,j
do i=1,N_det_ref
do j=1,N_det_non_ref
call i_h_j(psi_ref(1,1,i), psi_non_ref(1,1,j), N_int, h_cache(i,j))
call get_s2(psi_ref(1,1,i), psi_non_ref(1,1,j), N_int, s2_cache(i,j))
end do
end do
END_PROVIDER
subroutine filter_tq(i_generator,n_selected,det_buffer,Nint,tq,N_tq,miniList,N_miniList)
use bitmasks
implicit none
integer, intent(in) :: i_generator,n_selected, Nint
integer(bit_kind), intent(in) :: det_buffer(Nint,2,n_selected)
integer :: i,j,k,m
logical :: is_in_wavefunction
integer,allocatable :: degree(:)
integer,allocatable :: idx(:)
logical :: good
integer(bit_kind), intent(inout) :: tq(Nint,2,n_selected) !! intent(out)
integer, intent(out) :: N_tq
integer :: nt,ni
logical, external :: is_connected_to, is_generable
integer(bit_kind),intent(in) :: miniList(Nint,2,N_det_generators)
integer,intent(in) :: N_miniList
allocate(degree(psi_det_size))
allocate(idx(0:psi_det_size))
N_tq = 0
i_loop : do i=1,N_selected
do k=1, N_minilist
if(is_generable(miniList(1,1,k), det_buffer(1,1,i), Nint)) cycle i_loop
end do
! Select determinants that are triple or quadruple excitations
! from the ref
good = .True.
call get_excitation_degree_vector(psi_ref,det_buffer(1,1,i),degree,Nint,N_det_ref,idx)
!good=(idx(0) == 0) tant que degree > 2 pas retourné par get_excitation_degree_vector
do k=1,idx(0)
if (degree(k) < 3) then
good = .False.
exit
endif
enddo
if (good) then
if (.not. is_in_wavefunction(det_buffer(1,1,i),Nint)) then
N_tq += 1
do k=1,N_int
tq(k,1,N_tq) = det_buffer(k,1,i)
tq(k,2,N_tq) = det_buffer(k,2,i)
enddo
endif
endif
enddo i_loop
end
subroutine filter_tq_micro(i_generator,n_selected,det_buffer,Nint,tq,N_tq,microlist,ptr_microlist,N_microlist,key_mask)
use bitmasks
implicit none
integer, intent(in) :: i_generator,n_selected, Nint
integer(bit_kind), intent(in) :: det_buffer(Nint,2,n_selected)
integer :: i,j,k,m
logical :: is_in_wavefunction
integer,allocatable :: degree(:)
integer,allocatable :: idx(:)
logical :: good
integer(bit_kind), intent(inout) :: tq(Nint,2,n_selected) !! intent(out)
integer, intent(out) :: N_tq
integer :: nt,ni
logical, external :: is_connected_to, is_generable
integer(bit_kind),intent(in) :: microlist(Nint,2,*)
integer,intent(in) :: ptr_microlist(0:*)
integer,intent(in) :: N_microlist(0:*)
integer(bit_kind),intent(in) :: key_mask(Nint, 2)
integer :: mobiles(2), smallerlist
allocate(degree(psi_det_size))
allocate(idx(0:psi_det_size))
N_tq = 0
i_loop : do i=1,N_selected
call getMobiles(det_buffer(1,1,i), key_mask, mobiles, Nint)
if(N_microlist(mobiles(1)) < N_microlist(mobiles(2))) then
smallerlist = mobiles(1)
else
smallerlist = mobiles(2)
end if
if(N_microlist(smallerlist) > 0) then
do k=ptr_microlist(smallerlist), ptr_microlist(smallerlist)+N_microlist(smallerlist)-1
if(is_generable(microlist(1,1,k), det_buffer(1,1,i), Nint)) cycle i_loop
end do
end if
if(N_microlist(0) > 0) then
do k=1, N_microlist(0)
if(is_generable(microlist(1,1,k), det_buffer(1,1,i), Nint)) cycle i_loop
end do
end if
! Select determinants that are triple or quadruple excitations
! from the ref
good = .True.
call get_excitation_degree_vector(psi_ref,det_buffer(1,1,i),degree,Nint,N_det_ref,idx)
!good=(idx(0) == 0) tant que degree > 2 pas retourné par get_excitation_degree_vector
do k=1,idx(0)
if (degree(k) < 3) then
good = .False.
exit
endif
enddo
if (good) then
if (.not. is_in_wavefunction(det_buffer(1,1,i),Nint)) then
N_tq += 1
do k=1,N_int
tq(k,1,N_tq) = det_buffer(k,1,i)
tq(k,2,N_tq) = det_buffer(k,2,i)
enddo
endif
endif
enddo i_loop
end