10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-12-23 12:56:14 +01:00
quantum_package/plugins/FOBOCI/SC2_1h1p.irp.f

890 lines
31 KiB
Fortran

subroutine dressing_1h1p(dets_in,u_in,diag_H_elements,dim_in,sze,N_st,Nint,convergence)
use bitmasks
implicit none
BEGIN_DOC
! CISD+SC2 method :: take off all the disconnected terms of a ROHF+1h1p (selected or not)
!
! dets_in : bitmasks corresponding to determinants
!
! u_in : guess coefficients on the various states. Overwritten
! on exit
!
! dim_in : leftmost dimension of u_in
!
! sze : Number of determinants
!
! N_st : Number of eigenstates
!
! Initial guess vectors are not necessarily orthonormal
END_DOC
integer, intent(in) :: dim_in, sze, N_st, Nint
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
double precision, intent(inout) :: u_in(dim_in,N_st)
double precision, intent(out) :: diag_H_elements(dim_in)
double precision, intent(in) :: convergence
integer :: i,j,k,l
integer :: n_singles
integer :: index_singles(sze),hole_particles_singles(sze,3)
integer :: n_doubles
integer :: index_doubles(sze),hole_particles_doubles(sze,2)
integer :: index_hf
double precision :: e_corr_singles(mo_tot_num,2)
double precision :: e_corr_doubles(mo_tot_num)
double precision :: e_corr_singles_total(2)
double precision :: e_corr_doubles_1h1p
integer :: exc(0:2,2,2),degree
integer :: h1,h2,p1,p2,s1,s2
integer :: other_spin(2)
double precision :: phase
integer(bit_kind) :: key_tmp(N_int,2)
integer :: i_ok
double precision :: phase_single_double,phase_double_hf,get_mo_bielec_integral
double precision :: hij,c_ref,contrib
integer :: iorb
other_spin(1) = 2
other_spin(2) = 1
n_singles = 0
n_doubles = 0
do i = 1,sze
call get_excitation(ref_bitmask,dets_in(1,1,i),exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
call i_H_j(dets_in(1,1,i),dets_in(1,1,i),N_int,hij)
diag_H_elements(i) = hij
if(degree == 0)then
index_hf = i
else if (degree == 1)then
n_singles +=1
index_singles(n_singles) = i
! h1 = inactive orbital of the hole
hole_particles_singles(n_singles,1) = h1
! p1 = virtual orbital of the particle
hole_particles_singles(n_singles,2) = p1
! s1 = spin of the electron excited
hole_particles_singles(n_singles,3) = s1
else if (degree == 2)then
n_doubles +=1
index_doubles(n_doubles) = i
! h1 = inactive orbital of the hole (beta of course)
hole_particles_doubles(n_doubles,1) = h1
! p1 = virtual orbital of the particle (alpha of course)
hole_particles_doubles(n_doubles,2) = p2
else
print*,'PB !! found out other thing than a single or double'
print*,'stopping ..'
stop
endif
enddo
e_corr_singles = 0.d0
e_corr_doubles = 0.d0
e_corr_singles_total = 0.d0
e_corr_doubles_1h1p = 0.d0
c_ref = 1.d0/u_in(index_hf,1)
print*,'c_ref = ',c_ref
do i = 1,sze
call get_excitation(ref_bitmask,dets_in(1,1,i),exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
call i_H_j(ref_bitmask,dets_in(1,1,i),N_int,hij)
contrib = hij * u_in(i,1) * c_ref
if (degree == 1)then
e_corr_singles(h1,s1) += contrib
e_corr_singles(p1,s1) += contrib
e_corr_singles_total(s1)+= contrib
else if (degree == 2)then
e_corr_doubles_1h1p += contrib
e_corr_doubles(h1) += contrib
e_corr_doubles(p2) += contrib
endif
enddo
print*,'e_corr_singles alpha = ',e_corr_singles_total(1)
print*,'e_corr_singles beta = ',e_corr_singles_total(2)
print*,'e_corr_doubles_1h1p = ',e_corr_doubles_1h1p
! repeat all the correlation energy on the singles
do i = 1,n_singles
! you can repeat all the correlation energy of the single excitation of the other spin
diag_H_elements(index_singles(i)) += e_corr_singles_total(other_spin(hole_particles_singles(i,3)))
! you can repeat all the correlation energy of the single excitation of the same spin
do j = 1, n_inact_orb
iorb = list_inact(j)
! except the one of the hole
if(iorb == hole_particles_singles(i,1))cycle
! ispin = hole_particles_singles(i,3)
diag_H_elements(index_singles(i)) += e_corr_singles(iorb,hole_particles_singles(i,3))
enddo
! also exclude all the energy coming from the virtual orbital
diag_H_elements(index_singles(i)) -= e_corr_singles(hole_particles_singles(i,2),hole_particles_singles(i,3))
! If it is a single excitation alpha, you can repeat :
! +) all the double excitation 1h1p, appart the part involving the virtual orbital "r"
! If it is a single excitation alpha, you can repeat :
! +) all the double excitation 1h1p, appart the part involving the inactive orbital "i"
diag_H_elements(index_singles(i)) += e_corr_doubles_1h1p
if(hole_particles_singles(i,3) == 1)then ! alpha single excitation
diag_H_elements(index_singles(i)) -= e_corr_doubles(hole_particles_singles(i,2))
else ! beta single exctitation
diag_H_elements(index_singles(i)) -= e_corr_doubles(hole_particles_singles(i,1))
endif
enddo
! repeat all the correlation energy on the doubles
! as all the doubles involve the active space, you cannot repeat any of them one on another
do i = 1, n_doubles
! on a given double, you can repeat all the correlation energy of the singles alpha
do j = 1, n_inact_orb
iorb = list_inact(j)
! ispin = hole_particles_singles(i,3)
diag_H_elements(index_doubles(i)) += e_corr_singles(iorb,1)
enddo
! except the part involving the virtual orbital "hole_particles_doubles(i,2)"
diag_H_elements(index_doubles(i)) -= e_corr_singles(hole_particles_doubles(i,2),1)
! on a given double, you can repeat all the correlation energy of the singles beta
do j = 1, n_inact_orb
iorb = list_inact(j)
! except the one of the hole
if(iorb == hole_particles_doubles(i,1))cycle
! ispin = hole_particles_singles(i,3)
diag_H_elements(index_doubles(i)) += e_corr_singles(iorb,2)
enddo
enddo
! Taking into account the connected part of the 2h2p on the HF determinant
! 1/2 \sum_{ir,js} c_{ir}^{sigma} c_{js}^{sigma}
! diag_H_elements(index_hf) += total_corr_e_2h2p
return
c_ref = c_ref * c_ref
print*,'diag_H_elements(index_hf) = ',diag_H_elements(index_hf)
do i = 1, n_singles
! start on the single excitation "|i>"
h1 = hole_particles_singles(i,1)
p1 = hole_particles_singles(i,2)
do j = 1, n_singles
do k = 1, N_int
key_tmp(k,1) = dets_in(k,1,index_singles(i))
key_tmp(k,2) = dets_in(k,2,index_singles(i))
enddo
h2 = hole_particles_singles(j,1)
p2 = hole_particles_singles(j,2)
call do_mono_excitation(key_tmp,h2,p2,hole_particles_singles(j,3),i_ok)
! apply the excitation operator from the single excitation "|j>"
if(i_ok .ne. 1)cycle
double precision :: phase_ref_other_single,diag_H_mat_elem,hijj,contrib_e2,coef_1
call get_excitation(key_tmp,dets_in(1,1,index_singles(i)),exc,degree,phase_single_double,N_int)
call get_excitation(ref_bitmask,dets_in(1,1,index_singles(j)),exc,degree,phase_ref_other_single,N_int)
call i_H_j(ref_bitmask,key_tmp,N_int,hij)
diag_H_elements(index_hf) += u_in(index_singles(i),1) * u_in(index_singles(j),1) * c_ref * hij &
* phase_single_double * phase_ref_other_single
enddo
enddo
print*,'diag_H_elements(index_hf) = ',diag_H_elements(index_hf)
end
subroutine dressing_1h1p_by_2h2p(dets_in,u_in,diag_H_elements,dim_in,sze,N_st,Nint,convergence)
use bitmasks
implicit none
BEGIN_DOC
! CISD+SC2 method :: take off all the disconnected terms of a ROHF+1h1p (selected or not)
!
! dets_in : bitmasks corresponding to determinants
!
! u_in : guess coefficients on the various states. Overwritten
! on exit
!
! dim_in : leftmost dimension of u_in
!
! sze : Number of determinants
!
! N_st : Number of eigenstates
!
! Initial guess vectors are not necessarily orthonormal
END_DOC
integer, intent(in) :: dim_in, sze, N_st, Nint
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
double precision, intent(inout) :: u_in(dim_in,N_st)
double precision, intent(out) :: diag_H_elements(0:dim_in)
double precision, intent(in) :: convergence
integer :: i,j,k,l
integer :: r,s,i0,j0,r0,s0
integer :: n_singles
integer :: index_singles(sze),hole_particles_singles(sze,3)
integer :: n_doubles
integer :: index_doubles(sze),hole_particles_doubles(sze,2)
integer :: index_hf
double precision :: e_corr_singles(mo_tot_num,2)
double precision :: e_corr_doubles(mo_tot_num)
double precision :: e_corr_singles_total(2)
double precision :: e_corr_doubles_1h1p
integer :: exc(0:2,2,2),degree
integer :: h1,h2,p1,p2,s1,s2
integer :: other_spin(2)
double precision :: phase
integer(bit_kind) :: key_tmp(N_int,2)
integer :: i_ok
double precision :: phase_single_double,phase_double_hf,get_mo_bielec_integral
double precision :: hij,c_ref,contrib
integer :: iorb
other_spin(1) = 2
other_spin(2) = 1
n_singles = 0
n_doubles = 0
do i = 1,sze
call get_excitation(ref_bitmask,dets_in(1,1,i),exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
call i_H_j(dets_in(1,1,i),dets_in(1,1,i),N_int,hij)
diag_H_elements(i) = hij
if(degree == 0)then
index_hf = i
else if (degree == 1)then
n_singles +=1
index_singles(n_singles) = i
! h1 = inactive orbital of the hole
hole_particles_singles(n_singles,1) = h1
! p1 = virtual orbital of the particle
hole_particles_singles(n_singles,2) = p1
! s1 = spin of the electron excited
hole_particles_singles(n_singles,3) = s1
else if (degree == 2)then
n_doubles +=1
index_doubles(n_doubles) = i
! h1 = inactive orbital of the hole (beta of course)
hole_particles_doubles(n_doubles,1) = h1
! p1 = virtual orbital of the particle (alpha of course)
hole_particles_doubles(n_doubles,2) = p2
else
print*,'PB !! found out other thing than a single or double'
print*,'stopping ..'
stop
endif
enddo
double precision :: delta_e
double precision :: coef_ijrs
diag_H_elements = 0.d0
do i0 = 1, n_core_inact_orb
i= list_core_inact(i0)
do j0 = i0+1, n_core_inact_orb
j = list_core_inact(j0)
print*, i,j
do r0 = 1, n_virt_orb
r = list_virt(r0)
do s0 = r0+1, n_virt_orb
s = list_virt(s0)
!!! alpha (i-->r) / beta (j-->s)
s1 = 1
s2 = 2
key_tmp = ref_bitmask
call do_mono_excitation(key_tmp,i,r,s1,i_ok)
if(i_ok .ne.1)then
print*, 'pb !!'
stop
endif
call do_mono_excitation(key_tmp,j,s,s2,i_ok)
if(i_ok .ne.1)then
print*, 'pb !!'
stop
endif
call i_H_j(ref_bitmask, key_tmp, N_int,hij)
delta_e = Fock_matrix_diag_mo(i) + Fock_matrix_diag_mo(j) - Fock_matrix_diag_mo(r) - Fock_matrix_diag_mo(s)
coef_ijrs = hij/delta_e
do k = 1, n_singles
l = index_singles(k)
call i_H_j(dets_in(1,1,l), key_tmp, N_int,hij)
diag_H_elements(l) += coef_ijrs * hij
enddo
!if(i>j.and.r>s)then
!! alpha (i-->r) / alpha (j-->s)
s1 = 1
s2 = 1
key_tmp = ref_bitmask
call do_mono_excitation(key_tmp,i,r,s1,i_ok)
if(i_ok .ne.1)then
print*, 'pb !!'
stop
endif
call do_mono_excitation(key_tmp,j,s,s2,i_ok)
if(i_ok .ne.1)then
print*, 'pb !!'
stop
endif
call i_H_j(ref_bitmask, key_tmp, N_int,hij)
delta_e = Fock_matrix_diag_mo(i) + Fock_matrix_diag_mo(j) - Fock_matrix_diag_mo(r) - Fock_matrix_diag_mo(s)
coef_ijrs = hij/delta_e
do k = 1, n_singles
l = index_singles(k)
call i_H_j(dets_in(1,1,l), key_tmp, N_int,hij)
diag_H_elements(l) += coef_ijrs * hij
enddo
!! beta (i-->r) / beta (j-->s)
s1 = 2
s2 = 2
key_tmp = ref_bitmask
call do_mono_excitation(key_tmp,i,r,s1,i_ok)
if(i_ok .ne.1)then
print*, 'pb !!'
stop
endif
call do_mono_excitation(key_tmp,j,s,s2,i_ok)
if(i_ok .ne.1)then
print*, 'pb !!'
stop
endif
call i_H_j(ref_bitmask, key_tmp, N_int,hij)
delta_e = Fock_matrix_diag_mo(i) + Fock_matrix_diag_mo(j) - Fock_matrix_diag_mo(r) - Fock_matrix_diag_mo(s)
coef_ijrs = hij/delta_e
do k = 1, n_singles
l = index_singles(k)
call i_H_j(dets_in(1,1,l), key_tmp, N_int,hij)
diag_H_elements(l) += coef_ijrs * hij
enddo
!endif
enddo
enddo
enddo
enddo
c_ref = 1.d0/u_in(index_hf,1)
do k = 1, n_singles
l = index_singles(k)
diag_H_elements(0) -= diag_H_elements(l)
enddo
! do k = 1, n_doubles
! l = index_doubles(k)
! diag_H_elements(0) += diag_H_elements(l)
! enddo
end
subroutine dressing_1h1p_full(dets_in,u_in,H_matrix,dim_in,sze,N_st,Nint,convergence)
use bitmasks
implicit none
BEGIN_DOC
! CISD+SC2 method :: take off all the disconnected terms of a ROHF+1h1p (selected or not)
!
! dets_in : bitmasks corresponding to determinants
!
! u_in : guess coefficients on the various states. Overwritten
! on exit
!
! dim_in : leftmost dimension of u_in
!
! sze : Number of determinants
!
! N_st : Number of eigenstates
!
! Initial guess vectors are not necessarily orthonormal
END_DOC
integer, intent(in) :: dim_in, sze, N_st, Nint
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
double precision, intent(in) :: u_in(dim_in,N_st)
double precision, intent(inout) :: H_matrix(sze,sze)
double precision, intent(in) :: convergence
integer :: i,j,k,l
integer :: n_singles
integer :: index_singles(sze),hole_particles_singles(sze,3)
integer :: n_doubles
integer :: index_doubles(sze),hole_particles_doubles(sze,2)
integer :: index_hf
double precision :: e_corr_singles(mo_tot_num,2)
double precision :: e_corr_doubles(mo_tot_num)
double precision :: e_corr_singles_total(2)
double precision :: e_corr_doubles_1h1p
integer :: exc(0:2,2,2),degree
integer :: h1,h2,p1,p2,s1,s2
integer :: other_spin(2)
double precision :: phase
integer(bit_kind) :: key_tmp(N_int,2)
integer :: i_ok
double precision :: phase_single_double,phase_double_hf,get_mo_bielec_integral
double precision :: hij,c_ref,contrib
integer :: iorb
other_spin(1) = 2
other_spin(2) = 1
n_singles = 0
n_doubles = 0
do i = 1,sze
call get_excitation(ref_bitmask,dets_in(1,1,i),exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
if(degree == 0)then
index_hf = i
else if (degree == 1)then
n_singles +=1
index_singles(n_singles) = i
! h1 = inactive orbital of the hole
hole_particles_singles(n_singles,1) = h1
! p1 = virtual orbital of the particle
hole_particles_singles(n_singles,2) = p1
! s1 = spin of the electron excited
hole_particles_singles(n_singles,3) = s1
else if (degree == 2)then
n_doubles +=1
index_doubles(n_doubles) = i
! h1 = inactive orbital of the hole (beta of course)
hole_particles_doubles(n_doubles,1) = h1
! p1 = virtual orbital of the particle (alpha of course)
hole_particles_doubles(n_doubles,2) = p2
else
print*,'PB !! found out other thing than a single or double'
print*,'stopping ..'
stop
endif
enddo
double precision, allocatable :: dressing_H_mat_elem(:)
allocate(dressing_H_mat_elem(N_det))
logical :: lmct
dressing_H_mat_elem = 0.d0
call dress_diag_elem_2h2p(dressing_H_mat_elem,N_det)
lmct = .False.
call dress_diag_elem_2h1p(dressing_H_mat_elem,N_det,lmct,1000)
lmct = .true.
call dress_diag_elem_1h2p(dressing_H_mat_elem,N_det,lmct,1000)
do i = 1, N_det
H_matrix(i,i) += dressing_H_mat_elem(i)
enddo
e_corr_singles = 0.d0
e_corr_doubles = 0.d0
e_corr_singles_total = 0.d0
e_corr_doubles_1h1p = 0.d0
c_ref = 1.d0/u_in(index_hf,1)
print*,'c_ref = ',c_ref
do i = 1,sze
call get_excitation(ref_bitmask,dets_in(1,1,i),exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
call i_H_j(ref_bitmask,dets_in(1,1,i),N_int,hij)
contrib = hij * u_in(i,1) * c_ref
if (degree == 1)then
e_corr_singles(h1,s1) += contrib
e_corr_singles(p1,s1) += contrib
e_corr_singles_total(s1)+= contrib
else if (degree == 2)then
e_corr_doubles_1h1p += contrib
e_corr_doubles(h1) += contrib
e_corr_doubles(p2) += contrib
endif
enddo
print*,'e_corr_singles alpha = ',e_corr_singles_total(1)
print*,'e_corr_singles beta = ',e_corr_singles_total(2)
print*,'e_corr_doubles_1h1p = ',e_corr_doubles_1h1p
! repeat all the correlation energy on the singles
! do i = 1,n_singles
! ! you can repeat all the correlation energy of the single excitation of the other spin
! H_matrix(index_singles(i),index_singles(i)) += e_corr_singles_total(other_spin(hole_particles_singles(i,3)))
! ! you can repeat all the correlation energy of the single excitation of the same spin
! do j = 1, n_inact_orb
! iorb = list_inact(j)
! ! except the one of the hole
! if(iorb == hole_particles_singles(i,1))cycle
! ! ispin = hole_particles_singles(i,3)
! H_matrix(index_singles(i),index_singles(i)) += e_corr_singles(iorb,hole_particles_singles(i,3))
! enddo
! ! also exclude all the energy coming from the virtual orbital
! H_matrix(index_singles(i),index_singles(i)) -= e_corr_singles(hole_particles_singles(i,2),hole_particles_singles(i,3))
!
! ! If it is a single excitation alpha, you can repeat :
! ! +) all the double excitation 1h1p, appart the part involving the virtual orbital "r"
! ! If it is a single excitation alpha, you can repeat :
! ! +) all the double excitation 1h1p, appart the part involving the inactive orbital "i"
! H_matrix(index_singles(i),index_singles(i)) += e_corr_doubles_1h1p
! if(hole_particles_singles(i,3) == 1)then ! alpha single excitation
! H_matrix(index_singles(i),index_singles(i)) -= e_corr_doubles(hole_particles_singles(i,2))
! else ! beta single exctitation
! H_matrix(index_singles(i),index_singles(i)) -= e_corr_doubles(hole_particles_singles(i,1))
! endif
! enddo
! ! repeat all the correlation energy on the doubles
! ! as all the doubles involve the active space, you cannot repeat any of them one on another
! do i = 1, n_doubles
! ! on a given double, you can repeat all the correlation energy of the singles alpha
! do j = 1, n_inact_orb
! iorb = list_inact(j)
! ! ispin = hole_particles_singles(i,3)
! H_matrix(index_doubles(i),index_doubles(i)) += e_corr_singles(iorb,1)
! enddo
! ! except the part involving the virtual orbital "hole_particles_doubles(i,2)"
! H_matrix(index_doubles(i),index_doubles(i)) -= e_corr_singles(hole_particles_doubles(i,2),1)
! ! on a given double, you can repeat all the correlation energy of the singles beta
! do j = 1, n_inact_orb
! iorb = list_inact(j)
! ! except the one of the hole
! if(iorb == hole_particles_doubles(i,1))cycle
! ! ispin = hole_particles_singles(i,3)
! H_matrix(index_doubles(i),index_doubles(i)) += e_corr_singles(iorb,2)
! enddo
! enddo
! Taking into account the connected part of the 2h2p on the HF determinant
! 1/2 \sum_{ir,js} c_{ir}^{sigma} c_{js}^{sigma}
! H_matrix(index_hf) += total_corr_e_2h2p
print*,'H_matrix(index_hf,index_hf) = ',H_matrix(index_hf,index_hf)
do i = 1, n_singles
! start on the single excitation "|i>"
h1 = hole_particles_singles(i,1)
p1 = hole_particles_singles(i,2)
print*,'i = ',i
do j = i+1, n_singles
do k = 1, N_int
key_tmp(k,1) = dets_in(k,1,index_singles(i))
key_tmp(k,2) = dets_in(k,2,index_singles(i))
enddo
h2 = hole_particles_singles(j,1)
p2 = hole_particles_singles(j,2)
call do_mono_excitation(key_tmp,h2,p2,hole_particles_singles(j,3),i_ok)
! apply the excitation operator from the single excitation "|j>"
if(i_ok .ne. 1)cycle
double precision :: H_array(sze),diag_H_mat_elem,hjj
do k = 1, sze
call get_excitation_degree(dets_in(1,1,k),key_tmp,degree,N_int)
H_array(k) = 0.d0
if(degree > 2)cycle
call i_H_j(dets_in(1,1,k),key_tmp,N_int,hij)
H_array(k) = hij
enddo
hjj = 1.d0/(ref_bitmask_energy - diag_H_mat_elem(key_tmp,N_int))
! contrib_e2 = 0.5d0 * (delta_e + dsqrt(delta_e * delta_e + 4.d0 * hij * hij))
do l = 2, sze
! pause
H_matrix(l,l) += H_array(l) * H_array(l) * hjj
! H_matrix(1,l) += H_array(1) * H_array(l) * hjj
! H_matrix(l,1) += H_array(1) * H_array(l) * hjj
enddo
enddo
enddo
print*,'H_matrix(index_hf,index_hf) = ',H_matrix(index_hf,index_hf)
end
subroutine SC2_1h1p_full(dets_in,u_in,energies,H_matrix,dim_in,sze,N_st,Nint,convergence)
use bitmasks
implicit none
BEGIN_DOC
! CISD+SC2 method :: take off all the disconnected terms of a CISD (selected or not)
!
! dets_in : bitmasks corresponding to determinants
!
! u_in : guess coefficients on the various states. Overwritten
! on exit
!
! dim_in : leftmost dimension of u_in
!
! sze : Number of determinants
!
! N_st : Number of eigenstates
!
! Initial guess vectors are not necessarily orthonormal
END_DOC
integer, intent(in) :: dim_in, sze, N_st, Nint
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
double precision, intent(inout) :: u_in(dim_in,N_st)
double precision, intent(out) :: energies(N_st)
double precision, intent(out) :: H_matrix(sze,sze)
double precision, intent(in) :: convergence
integer :: i,j,iter
print*,'sze = ',sze
H_matrix = 0.d0
do iter = 1, 1
! if(sze<=N_det_max_jacobi)then
double precision, allocatable :: eigenvectors(:,:), eigenvalues(:),H_matrix_tmp(:,:)
allocate (H_matrix_tmp(size(H_matrix_all_dets,1),sze),eigenvalues(sze),eigenvectors(size(H_matrix_all_dets,1),sze))
H_matrix_tmp = 0.d0
call dressing_1h1p_full(dets_in,u_in,H_matrix_tmp,dim_in,sze,N_st,Nint,convergence)
do j=1,sze
do i=1,sze
H_matrix_tmp(i,j) += H_matrix_all_dets(i,j)
enddo
enddo
print*,'passed the dressing'
call lapack_diag(eigenvalues,eigenvectors, &
H_matrix_tmp,size(H_matrix_all_dets,1),sze)
do j=1,min(N_states_diag,sze)
do i=1,sze
u_in(i,j) = eigenvectors(i,j)
enddo
energies(j) = eigenvalues(j)
enddo
deallocate (H_matrix_tmp, eigenvalues, eigenvectors)
! else
! call davidson_diag_hjj(dets_in,u_in,diag_H_elements,energies,dim_in,sze,N_st,Nint,output_determinants)
! endif
print*,'E = ',energies(1) + nuclear_repulsion
enddo
end
subroutine SC2_1h1p(dets_in,u_in,energies,diag_H_elements,dim_in,sze,N_st,Nint,convergence)
use bitmasks
implicit none
BEGIN_DOC
! CISD+SC2 method :: take off all the disconnected terms of a CISD (selected or not)
!
! dets_in : bitmasks corresponding to determinants
!
! u_in : guess coefficients on the various states. Overwritten
! on exit
!
! dim_in : leftmost dimension of u_in
!
! sze : Number of determinants
!
! N_st : Number of eigenstates
!
! Initial guess vectors are not necessarily orthonormal
END_DOC
integer, intent(in) :: dim_in, sze, N_st, Nint
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
double precision, intent(inout) :: u_in(dim_in,N_st)
double precision, intent(out) :: energies(N_st)
double precision, intent(out) :: diag_H_elements(dim_in)
double precision :: extra_diag_H_elements(dim_in)
double precision, intent(in) :: convergence
integer :: i,j,iter
DIAG_H_ELEMENTS = 0.d0
do iter = 1, 1
! call dressing_1h1p(dets_in,u_in,diag_H_elements,dim_in,sze,N_st,Nint,convergence)
call dressing_1h1p_by_2h2p(dets_in,u_in,extra_diag_H_elements,dim_in,sze,N_st,Nint,convergence)
! if(sze<=N_det_max_jacobi)then
double precision, allocatable :: eigenvectors(:,:), eigenvalues(:),H_matrix_tmp(:,:)
allocate (H_matrix_tmp(size(H_matrix_all_dets,1),sze),eigenvalues(sze),eigenvectors(size(H_matrix_all_dets,1),sze))
do j=1,sze
do i=1,sze
H_matrix_tmp(i,j) = H_matrix_all_dets(i,j)
enddo
enddo
H_matrix_tmp(1,1) += extra_diag_H_elements(1)
do i = 2,sze
H_matrix_tmp(1,i) += extra_diag_H_elements(i)
H_matrix_tmp(i,1) += extra_diag_H_elements(i)
enddo
!do i = 1,sze
! H_matrix_tmp(i,i) = diag_H_elements(i)
!enddo
call lapack_diag(eigenvalues,eigenvectors, &
H_matrix_tmp,size(H_matrix_all_dets,1),sze)
do j=1,min(N_states_diag,sze)
do i=1,sze
u_in(i,j) = eigenvectors(i,j)
enddo
energies(j) = eigenvalues(j)
enddo
deallocate (H_matrix_tmp, eigenvalues, eigenvectors)
! else
! call davidson_diag_hjj(dets_in,u_in,diag_H_elements,energies,dim_in,sze,N_st,Nint,output_determinants)
! endif
print*,'E = ',energies(1) + nuclear_repulsion
enddo
end
subroutine density_matrix_1h1p(dets_in,u_in,density_matrix_alpha,density_matrix_beta,norm,dim_in,sze,N_st,Nint)
use bitmasks
implicit none
BEGIN_DOC
! CISD+SC2 method :: take off all the disconnected terms of a ROHF+1h1p (selected or not)
!
! dets_in : bitmasks corresponding to determinants
!
! u_in : guess coefficients on the various states. Overwritten
! on exit
!
! dim_in : leftmost dimension of u_in
!
! sze : Number of determinants
!
! N_st : Number of eigenstates
!
! Initial guess vectors are not necessarily orthonormal
END_DOC
integer, intent(in) :: dim_in, sze, N_st, Nint
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
double precision, intent(inout) :: u_in(dim_in,N_st)
double precision, intent(inout) :: density_matrix_alpha(mo_tot_num_align,mo_tot_num)
double precision, intent(inout) :: density_matrix_beta(mo_tot_num_align,mo_tot_num)
double precision, intent(inout) :: norm
integer :: i,j,k,l
integer :: n_singles
integer :: index_singles(sze),hole_particles_singles(sze,3)
integer :: n_doubles
integer :: index_doubles(sze),hole_particles_doubles(sze,2)
integer :: index_hf
integer :: exc(0:2,2,2),degree
integer :: h1,h2,p1,p2,s1,s2
integer :: other_spin(2)
double precision :: phase
integer(bit_kind) :: key_tmp(N_int,2)
integer :: i_ok
double precision :: phase_single_double,phase_double_hf,get_mo_bielec_integral
double precision :: hij,c_ref,contrib
integer :: iorb
other_spin(1) = 2
other_spin(2) = 1
n_singles = 0
n_doubles = 0
norm = 0.d0
do i = 1,sze
call get_excitation(ref_bitmask,dets_in(1,1,i),exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
norm += u_in(i,1)* u_in(i,1)
if(degree == 0)then
index_hf = i
c_ref = 1.d0/psi_coef(i,1)
else if (degree == 1)then
n_singles +=1
index_singles(n_singles) = i
! h1 = inactive orbital of the hole
hole_particles_singles(n_singles,1) = h1
! p1 = virtual orbital of the particle
hole_particles_singles(n_singles,2) = p1
! s1 = spin of the electron excited
hole_particles_singles(n_singles,3) = s1
else if (degree == 2)then
n_doubles +=1
index_doubles(n_doubles) = i
! h1 = inactive orbital of the hole (beta of course)
hole_particles_doubles(n_doubles,1) = h1
! p1 = virtual orbital of the particle (alpha of course)
hole_particles_doubles(n_doubles,2) = p2
else
print*,'PB !! found out other thing than a single or double'
print*,'stopping ..'
stop
endif
enddo
print*,'norm = ',norm
! Taking into account the connected part of the 2h2p on the HF determinant
! 1/2 \sum_{ir,js} c_{ir}^{sigma} c_{js}^{sigma}
do i = 1, n_singles
! start on the single excitation "|i>"
h1 = hole_particles_singles(i,1)
p1 = hole_particles_singles(i,2)
do j = 1, n_singles
do k = 1, N_int
key_tmp(k,1) = dets_in(k,1,index_singles(i))
key_tmp(k,2) = dets_in(k,2,index_singles(i))
enddo
h2 = hole_particles_singles(j,1)
p2 = hole_particles_singles(j,2)
call do_mono_excitation(key_tmp,h2,p2,hole_particles_singles(j,3),i_ok)
! apply the excitation operator from the single excitation "|j>"
if(i_ok .ne. 1)cycle
double precision :: coef_ijrs,phase_other_single_ref
integer :: occ(N_int*bit_kind_size,2),n_occ(2)
call get_excitation(key_tmp,dets_in(1,1,index_singles(i)),exc,degree,phase_single_double,N_int)
call get_excitation(ref_bitmask,dets_in(1,1,index_singles(j)),exc,degree,phase_other_single_ref,N_int)
call get_excitation(key_tmp,dets_in(1,1,index_singles(j)),exc,degree,phase_other_single_ref,N_int)
coef_ijrs = u_in(index_singles(i),1) * u_in(index_singles(j),1) * c_ref * c_ref &
* phase_single_double * phase_other_single_ref
call bitstring_to_list_ab(key_tmp, occ, n_occ, N_int)
do k=1,elec_alpha_num
l = occ(k,1)
density_matrix_alpha(l,l) += coef_ijrs*coef_ijrs
enddo
do k=1,elec_beta_num
l = occ(k,1)
density_matrix_beta(l,l) += coef_ijrs*coef_ijrs
enddo
norm += coef_ijrs* coef_ijrs
if(hole_particles_singles(j,3) == 1)then ! single alpha
density_matrix_alpha(h2,p2) += coef_ijrs * phase_single_double * u_in(index_singles(i),1) * c_ref
density_matrix_alpha(p2,h2) += coef_ijrs * phase_single_double * u_in(index_singles(i),1) * c_ref
else
density_matrix_beta(h2,p2) += coef_ijrs * phase_single_double * u_in(index_singles(i),1) * c_ref
density_matrix_beta(p2,h2) += coef_ijrs * phase_single_double * u_in(index_singles(i),1) * c_ref
endif
enddo
enddo
do i = 1, n_doubles
! start on the double excitation "|i>"
h1 = hole_particles_doubles(i,1)
p1 = hole_particles_doubles(i,2)
do j = 1, n_singles
do k = 1, N_int
key_tmp(k,1) = dets_in(k,1,index_doubles(i))
key_tmp(k,2) = dets_in(k,2,index_doubles(i))
enddo
h2 = hole_particles_singles(j,1)
p2 = hole_particles_singles(j,2)
call do_mono_excitation(key_tmp,h2,p2,hole_particles_singles(j,3),i_ok)
! apply the excitation operator from the single excitation "|j>"
if(i_ok .ne. 1)cycle
double precision :: coef_ijrs_kv,phase_double_triple
call get_excitation(key_tmp,dets_in(1,1,index_singles(i)),exc,degree,phase_double_triple,N_int)
call get_excitation(ref_bitmask,dets_in(1,1,index_singles(j)),exc,degree,phase_other_single_ref,N_int)
call get_excitation(key_tmp,dets_in(1,1,index_singles(j)),exc,degree,phase_other_single_ref,N_int)
coef_ijrs_kv = u_in(index_doubles(i),1) * u_in(index_singles(j),1) * c_ref * c_ref &
* phase_double_triple * phase_other_single_ref
call bitstring_to_list_ab(key_tmp, occ, n_occ, N_int)
do k=1,elec_alpha_num
l = occ(k,1)
density_matrix_alpha(l,l) += coef_ijrs_kv*coef_ijrs_kv
enddo
do k=1,elec_beta_num
l = occ(k,1)
density_matrix_beta(l,l) += coef_ijrs_kv*coef_ijrs_kv
enddo
norm += coef_ijrs_kv* coef_ijrs_kv
if(hole_particles_singles(j,3) == 1)then ! single alpha
density_matrix_alpha(h2,p2) += coef_ijrs_kv * phase_double_triple * u_in(index_doubles(i),1) * c_ref
density_matrix_alpha(p2,h2) += coef_ijrs_kv * phase_double_triple * u_in(index_doubles(i),1) * c_ref
else
density_matrix_beta(h2,p2) += coef_ijrs_kv * phase_double_triple * u_in(index_doubles(i),1) * c_ref
density_matrix_beta(p2,h2) += coef_ijrs_kv * phase_double_triple * u_in(index_doubles(i),1) * c_ref
endif
enddo
enddo
print*,'norm = ',norm
norm = 1.d0/norm
do i = 1, mo_tot_num
do j = 1, mo_tot_num
density_matrix_alpha(i,j) *= norm
density_matrix_beta(i,j) *= norm
enddo
enddo
coef_ijrs = 0.d0
do i = 1, mo_tot_num
coef_ijrs += density_matrix_beta(i,i) + density_matrix_beta(i,i)
enddo
print*,'accu = ',coef_ijrs
end