10
0
mirror of https://github.com/LCPQ/quantum_package synced 2025-01-11 05:28:29 +01:00
quantum_package/src/Utils
2014-10-16 23:13:38 +02:00
..
tests Run tests in parallel using python multiprocessing pool 2014-04-07 21:15:01 +02:00
abort.irp.f Accelerated openmp selection 2014-10-14 17:30:30 +02:00
ASSUMPTIONS.rst Added README.rst in all directories 2014-04-03 16:23:27 +02:00
integration.irp.f CISD_SC2 ok, CISD_SC2_selected ok 2014-05-30 18:07:04 +02:00
LinearAlgebra.irp.f minor changes 2014-10-06 15:49:16 +02:00
Makefile Added Bi-electronic integrals module 2014-04-17 23:50:51 +02:00
map_module.f90 Hartree-Fock is lightning fast 2014-09-22 20:19:56 +02:00
NEEDED_MODULES Make all_modules and all_clean compiles in parallel. Added NEEDED_MODULES 2014-04-03 11:19:41 +02:00
one_e_integration.irp.f minor changes 2014-10-06 15:49:16 +02:00
progress.irp.f Added progress bar 2014-10-02 01:06:13 +02:00
README.rst Added xyz types in symmetry (ocaml) 2014-08-27 16:38:13 +02:00
sort.irp.f CISD OK 2014-05-13 13:57:58 +02:00
util.irp.f Logfactorial for binom 2014-10-16 23:13:38 +02:00

============
Utils Module
============

Contains general purpose utilities.

Documentation
=============

.. Do not edit this section. It was auto-generated from the
.. NEEDED_MODULES file.

`abort_all <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/abort.irp.f#L1>`_
  If True, all the calculation is aborted

`abort_here <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/abort.irp.f#L10>`_
  If True, all the calculation is aborted

`catch_signal <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/abort.irp.f#L33>`_
  What to do on Ctrl-C. If two Ctrl-C are pressed within 1 sec, the calculation if aborted.

`trap_signals <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/abort.irp.f#L18>`_
  What to do when a signal is caught. Here, trap Ctrl-C and call the control_C subroutine.

`add_poly <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L243>`_
  Add two polynomials
  D(t) =! D(t) +( B(t)+C(t))

`add_poly_multiply <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L271>`_
  Add a polynomial multiplied by a constant
  D(t) =! D(t) +( cst * B(t))

`f_integral <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L345>`_
  function that calculates the following integral
  \int_{\-infty}^{+\infty} x^n \exp(-p x^2) dx

`gaussian_product <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L121>`_
  Gaussian product in 1D.
  e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2}

`gaussian_product_x <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L163>`_
  Gaussian product in 1D.
  e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2}

`give_explicit_poly_and_gaussian <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L46>`_
  Transforms the product of
  (x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3) exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta)
  into
  fact_k * [ sum (l_x = 0,i_order(1)) P_new(l_x,1) * (x-P_center(1))^l_x ] exp (- p (x-P_center(1))^2 )
  * [ sum (l_y = 0,i_order(2)) P_new(l_y,2) * (y-P_center(2))^l_y ] exp (- p (y-P_center(2))^2 )
  * [ sum (l_z = 0,i_order(3)) P_new(l_z,3) * (z-P_center(3))^l_z ] exp (- p (z-P_center(3))^2 )

`give_explicit_poly_and_gaussian_x <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L1>`_
  Transform the product of
  (x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3) exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta)
  into
  fact_k  (x-x_P)^iorder(1)  (y-y_P)^iorder(2)  (z-z_P)^iorder(3) exp(-p(r-P)^2)

`hermite <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L477>`_
  Hermite polynomial

`multiply_poly <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L201>`_
  Multiply two polynomials
  D(t) =! D(t) +( B(t)*C(t))

`recentered_poly2 <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L300>`_
  Recenter two polynomials

`rint <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L373>`_
  .. math::
  .br
  \int_0^1 dx \exp(-p x^2) x^n
  .br

`rint1 <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L533>`_
  Standard version of rint

`rint_large_n <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L502>`_
  Version of rint for large values of n

`rint_sum <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L421>`_
  Needed for the calculation of two-electron integrals.

`overlap_gaussian_x <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/one_e_integration.irp.f#L1>`_
  .. math::
  .br
  \sum_{-infty}^{+infty} (x-A_x)^ax (x-B_x)^bx exp(-alpha(x-A_x)^2) exp(-beta(x-B_X)^2) dx
  .br

`overlap_gaussian_xyz <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/one_e_integration.irp.f#L37>`_
  .. math::
  .br
  S_x = \int (x-A_x)^{a_x} exp(-\alpha(x-A_x)^2)  (x-B_x)^{b_x} exp(-beta(x-B_x)^2) dx \\
  S = S_x S_y S_z
  .br

`overlap_x_abs <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/one_e_integration.irp.f#L99>`_
  .. math                      ::
  .br
  \int_{-infty}^{+infty} (x-A_center)^(power_A) * (x-B_center)^power_B * exp(-alpha(x-A_center)^2) * exp(-beta(x-B_center)^2) dx
  .br

`align_double <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L70>`_
  Compute 1st dimension such that it is aligned for vectorization.

`all_utils <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L1>`_
  Dummy provider to provide all utils

`approx_dble <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L299>`_
  Undocumented

`binom <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L52>`_
  Binomial coefficients

`binom_func <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L21>`_
  .. math                       ::
  .br
  \frac{i!}{j!(i-j)!}
  .br

`binom_transp <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L53>`_
  Binomial coefficients

`dble_fact <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L129>`_
  n!!

`fact <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L85>`_
  n!

`fact_inv <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L117>`_
  1/n!

`inv_int <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L176>`_
  1/i

`normalize <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L275>`_
  Normalizes vector u
  u is expected to be aligned in memory.

`nproc <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L202>`_
  Number of current OpenMP threads

`u_dot_u <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L244>`_
  Compute <u|u>

`u_dot_v <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L218>`_
  Compute <u|v>

`wall_time <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L187>`_
  The equivalent of cpu_time, but for the wall time.

`write_git_log <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L162>`_
  Write the last git commit in file iunit.