10
0
mirror of https://github.com/LCPQ/quantum_package synced 2025-01-26 04:22:08 +01:00
2018-01-05 18:15:34 +01:00

132 lines
4.0 KiB
Fortran

BEGIN_PROVIDER [ double precision, sym_box, (3,2) ]
implicit none
BEGIN_DOC
! Opposite points of the box containing the molecule
END_DOC
integer :: i,xyz
sym_box(:,:) = 0.d0
do xyz=1,3
do i=1,nucl_num
sym_box(xyz,1) = min(sym_box(xyz,1), nucl_coord_sym(i,xyz))
sym_box(xyz,2) = max(sym_box(xyz,2), nucl_coord_sym(i,xyz))
enddo
enddo
sym_box(:,1) = sym_box(:,1) - 2.d0
sym_box(:,2) = sym_box(:,2) + 2.d0
END_PROVIDER
subroutine generate_sym_coord(n_sym_points,result)
implicit none
integer, intent(in) :: n_sym_points
double precision, intent(out) :: result(3,n_sym_points)
BEGIN_DOC
! xyz coordinates of points to check the symmetry, drawn uniformly in the molecular box.
END_DOC
integer :: i, iop
double precision, external :: halton_ranf
do i=1,n_sym_points,n_irrep
result(1,i) = sym_box(1,1) + halton_ranf(1) * (sym_box(1,2)-sym_box(1,1))
result(2,i) = sym_box(1,1) + halton_ranf(2) * (sym_box(2,2)-sym_box(2,1))
result(3,i) = sym_box(1,1) + halton_ranf(3) * (sym_box(3,2)-sym_box(3,1))
do iop=2,n_irrep
if (iop-1+i > n_sym_points) exit
call dgemm('N','N',3,1,3,1.d0,sym_transformation_matrices(1,1,iop), &
size(sym_transformation_matrices,1),&
result(1,i),size(result,1),0.d0,result(1,i+iop-1),size(result,1))
enddo
enddo
end
subroutine compute_sym_ao_values(sym_points, n_sym_points, result)
implicit none
BEGIN_DOC
! Values of the AO symmetry functions
END_DOC
integer, intent(in) :: n_sym_points
double precision, intent(in) :: sym_points(3,n_sym_points)
double precision, intent(out) :: result(n_sym_points, ao_num)
integer :: i, j
double precision :: point(3)
double precision :: x, y, z
double precision :: x2, y2, z2
integer :: k
result (:,:) = 0.d0
do j=1,ao_num
do i=1,n_sym_points
call point_to_input_orientation(sym_points(:,i), point)
x = point(1) - nucl_coord_transp(1,ao_nucl(j))
y = point(2) - nucl_coord_transp(2,ao_nucl(j))
z = point(3) - nucl_coord_transp(3,ao_nucl(j))
x2 = x*x + y*y + z*z
result(i,j) = 0.d0
do k=1,ao_prim_num(j)
result(i,j) += ao_coef_normalized_ordered_transp(k,j)*exp(-ao_expo_ordered_transp(k,j)*x2)
enddo
x = x**ao_power(j,1)
y = y**ao_power(j,2)
z = z**ao_power(j,3)
result(i,j) = x*y*z*result(i,j)
enddo
enddo
end
subroutine compute_sym_mo_values(sym_points, n_sym_points, result)
implicit none
BEGIN_DOC
! Values of the MO symmetry functions
END_DOC
integer, intent(in) :: n_sym_points
double precision, intent(in) :: sym_points(3,n_sym_points)
double precision, intent(out) :: result(n_sym_points, mo_tot_num)
double precision, allocatable :: tmp(:,:)
allocate(tmp(n_sym_points,ao_num))
call compute_sym_ao_values(sym_points,n_sym_points,tmp)
call dgemm('N','N',n_sym_points,mo_tot_num,ao_num, &
1.d0, tmp,size(tmp,1), mo_coef, size(mo_coef,1), &
0.d0, result,size(result,1))
deallocate(tmp)
end
subroutine compute_sym_det_values(sym_points, n_sym_points, result)
use bitmasks
implicit none
BEGIN_DOC
! Values of the determinant symmetry functions
END_DOC
integer, intent(in) :: n_sym_points
double precision, intent(in) :: sym_points(3,n_sym_points)
double precision, intent(out) :: result(n_sym_points, N_det)
integer :: list(N_int*bit_kind_size,2)
integer :: n_elements(2)
integer :: i, j, imo
double precision, allocatable :: tmp(:,:)
allocate(tmp(n_sym_points,mo_tot_num))
call compute_sym_mo_values(sym_points, n_sym_points, tmp)
result = 1.d0
do i=1,N_det
call bitstring_to_list_ab(psi_det(1,1,i), list, n_elements, N_int)
do j=1,n_elements(1)
imo = list(j,1)
result(:,i) *= tmp(:,imo)
enddo
do j=1,n_elements(2)
imo = list(j,2)
result(:,i) *= tmp(:,imo)
enddo
enddo
deallocate(tmp)
end