10
0
mirror of https://github.com/LCPQ/quantum_package synced 2025-01-12 22:18:31 +01:00
quantum_package/plugins/eginer/MRPT_Utils/mrpt_utils.irp.f
2018-10-19 11:32:58 +02:00

366 lines
12 KiB
Fortran

BEGIN_PROVIDER [ double precision, delta_ij_mrpt, (N_det,N_det,N_states) ]
&BEGIN_PROVIDER [ double precision, second_order_pt_new, (N_states) ]
&BEGIN_PROVIDER [ double precision, second_order_pt_new_1h, (N_states) ]
&BEGIN_PROVIDER [ double precision, second_order_pt_new_1p, (N_states) ]
&BEGIN_PROVIDER [ double precision, second_order_pt_new_1h1p, (N_states) ]
&BEGIN_PROVIDER [ double precision, second_order_pt_new_2h, (N_states) ]
&BEGIN_PROVIDER [ double precision, second_order_pt_new_2p, (N_states) ]
&BEGIN_PROVIDER [ double precision, second_order_pt_new_1h2p, (N_states) ]
&BEGIN_PROVIDER [ double precision, second_order_pt_new_2h1p, (N_states) ]
&BEGIN_PROVIDER [ double precision, second_order_pt_new_2h2p, (N_states) ]
implicit none
BEGIN_DOC
! Dressing matrix in N_det basis
END_DOC
integer :: i,j,m
integer :: i_state
double precision :: accu(N_states)
double precision, allocatable :: delta_ij_local(:,:,:)
delta_ij_mrpt = 0.d0
allocate (delta_ij_local(N_det,N_det,N_states))
! 1h
delta_ij_local = 0.d0
call H_apply_mrpt_1h(delta_ij_local,N_det)
accu = 0.d0
do i_state = 1, N_states
do i = 1, N_det
do j = 1, N_det
accu(i_state) += delta_ij_local(j,i,i_state) * psi_coef(i,i_state) * psi_coef(j,i_state)
delta_ij_mrpt(j,i,i_state) += delta_ij_local(j,i,i_state)
enddo
enddo
second_order_pt_new_1h(i_state) = accu(i_state)
enddo
print*, '1h = ',accu
! 1p
delta_ij_local = 0.d0
call H_apply_mrpt_1p(delta_ij_local,N_det)
accu = 0.d0
do i_state = 1, N_states
do i = 1, N_det
do j = 1, N_det
accu(i_state) += delta_ij_local(j,i,i_state) * psi_coef(i,i_state) * psi_coef(j,i_state)
delta_ij_mrpt(j,i,i_state) += delta_ij_local(j,i,i_state)
enddo
enddo
second_order_pt_new_1p(i_state) = accu(i_state)
enddo
print*, '1p = ',accu
! 1h1p
delta_ij_local = 0.d0
call H_apply_mrpt_1h1p(delta_ij_local,N_det)
double precision :: e_corr_from_1h1p_singles(N_states)
accu = 0.d0
do i_state = 1, N_states
do i = 1, N_det
do j = 1, N_det
accu(i_state) += delta_ij_local(j,i,i_state) * psi_coef(i,i_state) * psi_coef(j,i_state)
delta_ij_mrpt(j,i,i_state) += delta_ij_local(j,i,i_state)
enddo
enddo
second_order_pt_new_1h1p(i_state) = accu(i_state)
enddo
print*, '1h1p = ',accu
! 1h1p third order
if(do_third_order_1h1p)then
delta_ij_local = 0.d0
call give_1h1p_sec_order_singles_contrib(delta_ij_local)
accu = 0.d0
do i_state = 1, N_states
do i = 1, N_det
do j = 1, N_det
accu(i_state) += delta_ij_local(j,i,i_state) * psi_coef(i,i_state) * psi_coef(j,i_state)
delta_ij_mrpt(j,i,i_state) += delta_ij_local(j,i,i_state)
enddo
enddo
second_order_pt_new_1h1p(i_state) = accu(i_state)
enddo
print*, '1h1p(3)',accu
endif
! 2h
delta_ij_local = 0.d0
call H_apply_mrpt_2h(delta_ij_local,N_det)
accu = 0.d0
do i_state = 1, N_states
do i = 1, N_det
do j = 1, N_det
accu(i_state) += delta_ij_local(j,i,i_state) * psi_coef(i,i_state) * psi_coef(j,i_state)
delta_ij_mrpt(j,i,i_state) += delta_ij_local(j,i,i_state)
enddo
enddo
second_order_pt_new_2h(i_state) = accu(i_state)
enddo
print*, '2h = ',accu
! 2p
delta_ij_local = 0.d0
call H_apply_mrpt_2p(delta_ij_local,N_det)
accu = 0.d0
do i_state = 1, N_states
do i = 1, N_det
do j = 1, N_det
accu(i_state) += delta_ij_local(j,i,i_state) * psi_coef(i,i_state) * psi_coef(j,i_state)
delta_ij_mrpt(j,i,i_state) += delta_ij_local(j,i,i_state)
enddo
enddo
second_order_pt_new_2p(i_state) = accu(i_state)
enddo
print*, '2p = ',accu
! 1h2p
delta_ij_local = 0.d0
call give_1h2p_contrib(delta_ij_local)
call H_apply_mrpt_1h2p(delta_ij_local,N_det)
accu = 0.d0
do i_state = 1, N_states
do i = 1, N_det
do j = 1, N_det
accu(i_state) += delta_ij_local(j,i,i_state) * psi_coef(i,i_state) * psi_coef(j,i_state)
delta_ij_mrpt(j,i,i_state) += delta_ij_local(j,i,i_state)
enddo
enddo
second_order_pt_new_1h2p(i_state) = accu(i_state)
enddo
print*, '1h2p = ',accu
! 2h1p
delta_ij_local = 0.d0
call give_2h1p_contrib(delta_ij_local)
call H_apply_mrpt_2h1p(delta_ij_local,N_det)
accu = 0.d0
do i_state = 1, N_states
do i = 1, N_det
do j = 1, N_det
accu(i_state) += delta_ij_local(j,i,i_state) * psi_coef(i,i_state) * psi_coef(j,i_state)
delta_ij_mrpt(j,i,i_state) += delta_ij_local(j,i,i_state)
enddo
enddo
second_order_pt_new_2h1p(i_state) = accu(i_state)
enddo
print*, '2h1p = ',accu
! 2h2p
!delta_ij_local = 0.d0
!call H_apply_mrpt_2h2p(delta_ij_local,N_det)
!accu = 0.d0
!do i_state = 1, N_states
!do i = 1, N_det
! do j = 1, N_det
! accu(i_state) += delta_ij_local(j,i,i_state) * psi_coef(i,i_state) * psi_coef(j,i_state)
! delta_ij_mrpt(j,i,i_state) += delta_ij_local(j,i,i_state)
! enddo
!enddo
!second_order_pt_new_2h2p(i_state) = accu(i_state)
!enddo
!print*, '2h2p = ',accu
double precision :: contrib_2h2p(N_states)
call give_2h2p(contrib_2h2p)
do i_state = 1, N_states
do i = 1, N_det
delta_ij_mrpt(i,i,i_state) += contrib_2h2p(i_state)
enddo
second_order_pt_new_2h2p(i_state) = contrib_2h2p(i_state)
enddo
print*, '2h2p = ',contrib_2h2p(1)
! total
accu = 0.d0
do i_state = 1, N_states
do i = 1, N_det
! write(*,'(1000(F16.10,x))')delta_ij_mrpt(i,:,:)
do j = i_state, N_det
accu(i_state) += delta_ij_mrpt(j,i,i_state) * psi_coef(i,i_state) * psi_coef(j,i_state)
enddo
enddo
second_order_pt_new(i_state) = accu(i_state)
print*, 'total= ',accu(i_state)
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, Hmatrix_dressed_pt2_new, (N_det,N_det,N_states)]
implicit none
integer :: i,j,i_state
do i_state = 1, N_states
do i = 1,N_det
do j = 1,N_det
Hmatrix_dressed_pt2_new(j,i,i_state) = H_matrix_all_dets(j,i) + delta_ij_mrpt(j,i,i_state)
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, Hmatrix_dressed_pt2_new_symmetrized, (N_det,N_det,N_states)]
implicit none
integer :: i,j,i_state
do i_state = 1, N_states
do i = 1,N_det
do j = i,N_det
Hmatrix_dressed_pt2_new_symmetrized(j,i,i_state) = H_matrix_all_dets(j,i) &
+ 0.5d0 * ( delta_ij_mrpt(j,i,i_state) + delta_ij_mrpt(i,j,i_state) )
Hmatrix_dressed_pt2_new_symmetrized(i,j,i_state) = Hmatrix_dressed_pt2_new_symmetrized(j,i,i_state)
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, CI_electronic_dressed_pt2_new_energy, (N_states) ]
&BEGIN_PROVIDER [ double precision, CI_dressed_pt2_new_eigenvectors, (N_det,N_states) ]
&BEGIN_PROVIDER [ double precision, CI_dressed_pt2_new_eigenvectors_s2, (N_states) ]
BEGIN_DOC
! Eigenvectors/values of the CI matrix
END_DOC
implicit none
double precision :: ovrlp,u_dot_v
integer :: i_good_state
integer, allocatable :: index_good_state_array(:)
logical, allocatable :: good_state_array(:)
double precision, allocatable :: s2_values_tmp(:)
integer :: i_other_state
double precision, allocatable :: eigenvectors(:,:), eigenvalues(:)
integer :: i_state
double precision :: s2,e_0
integer :: i,j,k
double precision, allocatable :: s2_eigvalues(:)
double precision, allocatable :: e_array(:)
integer, allocatable :: iorder(:)
! Guess values for the "N_states" states of the CI_dressed_pt2_new_eigenvectors
do j=1,min(N_states,N_det)
do i=1,N_det
CI_dressed_pt2_new_eigenvectors(i,j) = psi_coef(i,j)
enddo
enddo
do j=N_det+1,N_states
do i=1,N_det
CI_dressed_pt2_new_eigenvectors(i,j) = 0.d0
enddo
enddo
if (diag_algorithm == "Davidson") then
print*, 'Davidson not yet implemented for the dressing ... '
stop
else if (diag_algorithm == "Lapack") then
allocate (eigenvectors(size(H_matrix_all_dets,1),N_det))
allocate (eigenvalues(N_det))
call lapack_diag(eigenvalues,eigenvectors, &
Hmatrix_dressed_pt2_new_symmetrized(1,1,1),size(H_matrix_all_dets,1),N_det)
CI_electronic_dressed_pt2_new_energy(:) = 0.d0
if (s2_eig) then
i_state = 0
allocate (s2_eigvalues(N_det))
allocate(index_good_state_array(N_det),good_state_array(N_det))
good_state_array = .False.
call u_0_S2_u_0(s2_eigvalues,eigenvectors,N_det,psi_ref,N_int,&
N_det,size(eigenvectors,1))
do j=1,N_det
! Select at least n_states states with S^2 values closed to "expected_s2"
if(dabs(s2_eigvalues(j)-expected_s2).le.0.5d0)then
i_state +=1
index_good_state_array(i_state) = j
good_state_array(j) = .True.
endif
if(i_state.eq.N_states) then
exit
endif
enddo
if(i_state .ne.0)then
! Fill the first "i_state" states that have a correct S^2 value
do j = 1, i_state
do i=1,N_det
CI_dressed_pt2_new_eigenvectors(i,j) = eigenvectors(i,index_good_state_array(j))
enddo
CI_electronic_dressed_pt2_new_energy(j) = eigenvalues(index_good_state_array(j))
CI_dressed_pt2_new_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(j))
enddo
i_other_state = 0
do j = 1, N_det
if(good_state_array(j))cycle
i_other_state +=1
if(i_state+i_other_state.gt.n_states)then
exit
endif
do i=1,N_det
CI_dressed_pt2_new_eigenvectors(i,i_state+i_other_state) = eigenvectors(i,j)
enddo
CI_electronic_dressed_pt2_new_energy(i_state+i_other_state) = eigenvalues(j)
CI_dressed_pt2_new_eigenvectors_s2(i_state+i_other_state) = s2_eigvalues(i_state+i_other_state)
enddo
else
print*,''
print*,'!!!!!!!! WARNING !!!!!!!!!'
print*,' Within the ',N_det,'determinants selected'
print*,' and the ',N_states,'states requested'
print*,' We did not find any state with S^2 values close to ',expected_s2
print*,' We will then set the first N_states eigenvectors of the H matrix'
print*,' as the CI_dressed_pt2_new_eigenvectors'
print*,' You should consider more states and maybe ask for s2_eig to be .True. or just enlarge the CI space'
print*,''
do j=1,min(N_states,N_det)
do i=1,N_det
CI_dressed_pt2_new_eigenvectors(i,j) = eigenvectors(i,j)
enddo
CI_electronic_dressed_pt2_new_energy(j) = eigenvalues(j)
CI_dressed_pt2_new_eigenvectors_s2(j) = s2_eigvalues(j)
enddo
endif
deallocate(index_good_state_array,good_state_array)
deallocate(s2_eigvalues)
else
call u_0_S2_u_0(CI_dressed_pt2_new_eigenvectors_s2,eigenvectors,N_det,psi_ref,N_int,&
min(N_det,N_states),size(eigenvectors,1))
! Select the "N_states" states of lowest energy
do j=1,min(N_det,N_states)
do i=1,N_det
CI_dressed_pt2_new_eigenvectors(i,j) = eigenvectors(i,j)
enddo
CI_electronic_dressed_pt2_new_energy(j) = eigenvalues(j)
enddo
endif
deallocate(eigenvectors,eigenvalues)
endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, CI_dressed_pt2_new_energy, (N_states) ]
implicit none
BEGIN_DOC
! N_states lowest eigenvalues of the CI matrix
END_DOC
integer :: j
character*(8) :: st
call write_time(6)
do j=1,N_states
CI_dressed_pt2_new_energy(j) = CI_electronic_dressed_pt2_new_energy(j) + nuclear_repulsion
write(st,'(I4)') j
call write_double(6,CI_dressed_pt2_new_energy(j),'Energy of state '//trim(st))
call write_double(6,CI_dressed_pt2_new_eigenvectors_s2(j),'S^2 of state '//trim(st))
enddo
END_PROVIDER