10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-12-23 04:43:50 +01:00
quantum_package/plugins/Integrals_erf/map_integrals_long_range.irp.f
2017-04-16 22:49:38 +02:00

627 lines
18 KiB
Fortran

use map_module
!! AO Map
!! ======
BEGIN_PROVIDER [ type(map_type), ao_integrals_erf_map ]
implicit none
BEGIN_DOC
! AO integrals
END_DOC
integer(key_kind) :: key_max
integer(map_size_kind) :: sze
call bielec_integrals_index(ao_num,ao_num,ao_num,ao_num,key_max)
sze = key_max
call map_init(ao_integrals_erf_map,sze)
print*, 'AO map initialized : ', sze
END_PROVIDER
BEGIN_PROVIDER [ integer, ao_integrals_erf_cache_min ]
&BEGIN_PROVIDER [ integer, ao_integrals_erf_cache_max ]
implicit none
BEGIN_DOC
! Min and max values of the AOs for which the integrals are in the cache
END_DOC
ao_integrals_erf_cache_min = max(1,ao_num - 63)
ao_integrals_erf_cache_max = ao_num
END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_integrals_erf_cache, (0:64*64*64*64) ]
use map_module
implicit none
BEGIN_DOC
! Cache of AO integrals for fast access
END_DOC
PROVIDE ao_bielec_integrals_erf_in_map
integer :: i,j,k,l,ii
integer(key_kind) :: idx
real(integral_kind) :: integral
!$OMP PARALLEL DO PRIVATE (i,j,k,l,idx,ii,integral)
do l=ao_integrals_erf_cache_min,ao_integrals_erf_cache_max
do k=ao_integrals_erf_cache_min,ao_integrals_erf_cache_max
do j=ao_integrals_erf_cache_min,ao_integrals_erf_cache_max
do i=ao_integrals_erf_cache_min,ao_integrals_erf_cache_max
!DIR$ FORCEINLINE
call bielec_integrals_index(i,j,k,l,idx)
!DIR$ FORCEINLINE
call map_get(ao_integrals_erf_map,idx,integral)
ii = l-ao_integrals_erf_cache_min
ii = ior( ishft(ii,6), k-ao_integrals_erf_cache_min)
ii = ior( ishft(ii,6), j-ao_integrals_erf_cache_min)
ii = ior( ishft(ii,6), i-ao_integrals_erf_cache_min)
ao_integrals_erf_cache(ii) = integral
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
END_PROVIDER
double precision function get_ao_bielec_integral_erf(i,j,k,l,map) result(result)
use map_module
implicit none
BEGIN_DOC
! Gets one AO bi-electronic integral from the AO map
END_DOC
integer, intent(in) :: i,j,k,l
integer(key_kind) :: idx
type(map_type), intent(inout) :: map
integer :: ii
real(integral_kind) :: tmp
PROVIDE ao_bielec_integrals_erf_in_map ao_integrals_erf_cache ao_integrals_erf_cache_min
!DIR$ FORCEINLINE
if (ao_overlap_abs(i,k)*ao_overlap_abs(j,l) < ao_integrals_threshold ) then
tmp = 0.d0
else if (ao_bielec_integral_erf_schwartz(i,k)*ao_bielec_integral_erf_schwartz(j,l) < ao_integrals_threshold) then
tmp = 0.d0
else
ii = l-ao_integrals_erf_cache_min
ii = ior(ii, k-ao_integrals_erf_cache_min)
ii = ior(ii, j-ao_integrals_erf_cache_min)
ii = ior(ii, i-ao_integrals_erf_cache_min)
if (iand(ii, -64) /= 0) then
!DIR$ FORCEINLINE
call bielec_integrals_index(i,j,k,l,idx)
!DIR$ FORCEINLINE
call map_get(map,idx,tmp)
tmp = tmp
else
ii = l-ao_integrals_erf_cache_min
ii = ior( ishft(ii,6), k-ao_integrals_erf_cache_min)
ii = ior( ishft(ii,6), j-ao_integrals_erf_cache_min)
ii = ior( ishft(ii,6), i-ao_integrals_erf_cache_min)
tmp = ao_integrals_erf_cache(ii)
endif
endif
result = tmp
end
subroutine get_ao_bielec_integrals_erf(j,k,l,sze,out_val)
use map_module
BEGIN_DOC
! Gets multiple AO bi-electronic integral from the AO map .
! All i are retrieved for j,k,l fixed.
END_DOC
implicit none
integer, intent(in) :: j,k,l, sze
real(integral_kind), intent(out) :: out_val(sze)
integer :: i
integer(key_kind) :: hash
double precision :: thresh
PROVIDE ao_bielec_integrals_erf_in_map ao_integrals_erf_map
thresh = ao_integrals_threshold
if (ao_overlap_abs(j,l) < thresh) then
out_val = 0.d0
return
endif
double precision :: get_ao_bielec_integral_erf
do i=1,sze
out_val(i) = get_ao_bielec_integral_erf(i,j,k,l,ao_integrals_erf_map)
enddo
end
subroutine get_ao_bielec_integrals_erf_non_zero(j,k,l,sze,out_val,out_val_index,non_zero_int)
use map_module
implicit none
BEGIN_DOC
! Gets multiple AO bi-electronic integral from the AO map .
! All non-zero i are retrieved for j,k,l fixed.
END_DOC
integer, intent(in) :: j,k,l, sze
real(integral_kind), intent(out) :: out_val(sze)
integer, intent(out) :: out_val_index(sze),non_zero_int
integer :: i
integer(key_kind) :: hash
double precision :: thresh,tmp
PROVIDE ao_bielec_integrals_erf_in_map
thresh = ao_integrals_threshold
non_zero_int = 0
if (ao_overlap_abs(j,l) < thresh) then
out_val = 0.d0
return
endif
non_zero_int = 0
do i=1,sze
integer, external :: ao_l4
double precision, external :: ao_bielec_integral_erf
!DIR$ FORCEINLINE
if (ao_bielec_integral_schwartz(i,k)*ao_bielec_integral_schwartz(j,l) < thresh) then
cycle
endif
call bielec_integrals_index(i,j,k,l,hash)
call map_get(ao_integrals_erf_map, hash,tmp)
if (dabs(tmp) < thresh ) cycle
non_zero_int = non_zero_int+1
out_val_index(non_zero_int) = i
out_val(non_zero_int) = tmp
enddo
end
function get_ao_erf_map_size()
implicit none
integer (map_size_kind) :: get_ao_erf_map_size
BEGIN_DOC
! Returns the number of elements in the AO map
END_DOC
get_ao_erf_map_size = ao_integrals_erf_map % n_elements
end
subroutine clear_ao_erf_map
implicit none
BEGIN_DOC
! Frees the memory of the AO map
END_DOC
call map_deinit(ao_integrals_erf_map)
FREE ao_integrals_erf_map
end
BEGIN_TEMPLATE
subroutine dump_$ao_integrals(filename)
use map_module
implicit none
BEGIN_DOC
! Save to disk the $ao integrals
END_DOC
character*(*), intent(in) :: filename
integer(cache_key_kind), pointer :: key(:)
real(integral_kind), pointer :: val(:)
integer*8 :: i,j, n
call ezfio_set_work_empty(.False.)
open(unit=66,file=filename,FORM='unformatted')
write(66) integral_kind, key_kind
write(66) $ao_integrals_map%sorted, $ao_integrals_map%map_size, &
$ao_integrals_map%n_elements
do i=0_8,$ao_integrals_map%map_size
write(66) $ao_integrals_map%map(i)%sorted, $ao_integrals_map%map(i)%map_size,&
$ao_integrals_map%map(i)%n_elements
enddo
do i=0_8,$ao_integrals_map%map_size
key => $ao_integrals_map%map(i)%key
val => $ao_integrals_map%map(i)%value
n = $ao_integrals_map%map(i)%n_elements
write(66) (key(j), j=1,n), (val(j), j=1,n)
enddo
close(66)
end
IRP_IF COARRAY
subroutine communicate_$ao_integrals()
use map_module
implicit none
BEGIN_DOC
! Communicate the $ao integrals with co-array
END_DOC
integer(cache_key_kind), pointer :: key(:)
real(integral_kind), pointer :: val(:)
integer*8 :: i,j, k, nmax
integer*8, save :: n[*]
integer :: copy_n
real(integral_kind), allocatable :: buffer_val(:)[:]
integer(cache_key_kind), allocatable :: buffer_key(:)[:]
real(integral_kind), allocatable :: copy_val(:)
integer(key_kind), allocatable :: copy_key(:)
n = 0_8
do i=0_8,$ao_integrals_map%map_size
n = max(n,$ao_integrals_map%map(i)%n_elements)
enddo
sync all
nmax = 0_8
do j=1,num_images()
nmax = max(nmax,n[j])
enddo
allocate( buffer_key(nmax)[*], buffer_val(nmax)[*])
allocate( copy_key(nmax), copy_val(nmax))
do i=0_8,$ao_integrals_map%map_size
key => $ao_integrals_map%map(i)%key
val => $ao_integrals_map%map(i)%value
n = $ao_integrals_map%map(i)%n_elements
do j=1,n
buffer_key(j) = key(j)
buffer_val(j) = val(j)
enddo
sync all
do j=1,num_images()
if (j /= this_image()) then
copy_n = n[j]
do k=1,copy_n
copy_val(k) = buffer_val(k)[j]
copy_key(k) = buffer_key(k)[j]
copy_key(k) = copy_key(k)+ishft(i,-map_shift)
enddo
call map_append($ao_integrals_map, copy_key, copy_val, copy_n )
endif
enddo
sync all
enddo
deallocate( buffer_key, buffer_val, copy_val, copy_key)
end
IRP_ENDIF
integer function load_$ao_integrals(filename)
implicit none
BEGIN_DOC
! Read from disk the $ao integrals
END_DOC
character*(*), intent(in) :: filename
integer*8 :: i
integer(cache_key_kind), pointer :: key(:)
real(integral_kind), pointer :: val(:)
integer :: iknd, kknd
integer*8 :: n, j
load_$ao_integrals = 1
open(unit=66,file=filename,FORM='unformatted',STATUS='UNKNOWN')
read(66,err=98,end=98) iknd, kknd
if (iknd /= integral_kind) then
print *, 'Wrong integrals kind in file :', iknd
stop 1
endif
if (kknd /= key_kind) then
print *, 'Wrong key kind in file :', kknd
stop 1
endif
read(66,err=98,end=98) $ao_integrals_map%sorted, $ao_integrals_map%map_size,&
$ao_integrals_map%n_elements
do i=0_8, $ao_integrals_map%map_size
read(66,err=99,end=99) $ao_integrals_map%map(i)%sorted, &
$ao_integrals_map%map(i)%map_size, $ao_integrals_map%map(i)%n_elements
call cache_map_reallocate($ao_integrals_map%map(i),$ao_integrals_map%map(i)%map_size)
enddo
do i=0_8, $ao_integrals_map%map_size
key => $ao_integrals_map%map(i)%key
val => $ao_integrals_map%map(i)%value
n = $ao_integrals_map%map(i)%n_elements
read(66,err=99,end=99) (key(j), j=1,n), (val(j), j=1,n)
enddo
call map_sort($ao_integrals_map)
load_$ao_integrals = 0
return
99 continue
call map_deinit($ao_integrals_map)
98 continue
stop 'Problem reading $ao_integrals_map file in work/'
end
SUBST [ ao_integrals_map, ao_integrals, ao_num ]
ao_integrals_erf_map ; ao_integrals_erf ; ao_num ;;
mo_integrals_erf_map ; mo_integrals_erf ; mo_tot_num;;
END_TEMPLATE
BEGIN_PROVIDER [ type(map_type), mo_integrals_erf_map ]
implicit none
BEGIN_DOC
! MO integrals
END_DOC
integer(key_kind) :: key_max
integer(map_size_kind) :: sze
call bielec_integrals_index(mo_tot_num,mo_tot_num,mo_tot_num,mo_tot_num,key_max)
sze = key_max
call map_init(mo_integrals_erf_map,sze)
print*, 'MO map initialized'
END_PROVIDER
subroutine insert_into_ao_integrals_erf_map(n_integrals,buffer_i, buffer_values)
use map_module
implicit none
BEGIN_DOC
! Create new entry into AO map
END_DOC
integer, intent(in) :: n_integrals
integer(key_kind), intent(inout) :: buffer_i(n_integrals)
real(integral_kind), intent(inout) :: buffer_values(n_integrals)
call map_append(ao_integrals_erf_map, buffer_i, buffer_values, n_integrals)
end
subroutine insert_into_mo_integrals_erf_map(n_integrals, &
buffer_i, buffer_values, thr)
use map_module
implicit none
BEGIN_DOC
! Create new entry into MO map, or accumulate in an existing entry
END_DOC
integer, intent(in) :: n_integrals
integer(key_kind), intent(inout) :: buffer_i(n_integrals)
real(integral_kind), intent(inout) :: buffer_values(n_integrals)
real(integral_kind), intent(in) :: thr
call map_update(mo_integrals_erf_map, buffer_i, buffer_values, n_integrals, thr)
end
BEGIN_PROVIDER [ integer, mo_integrals_erf_cache_min ]
&BEGIN_PROVIDER [ integer, mo_integrals_erf_cache_max ]
implicit none
BEGIN_DOC
! Min and max values of the MOs for which the integrals are in the cache
END_DOC
mo_integrals_erf_cache_min = max(1,elec_alpha_num - 31)
mo_integrals_erf_cache_max = min(mo_tot_num,mo_integrals_erf_cache_min+63)
END_PROVIDER
BEGIN_PROVIDER [ double precision, mo_integrals_erf_cache, (0:64*64*64*64) ]
implicit none
BEGIN_DOC
! Cache of MO integrals for fast access
END_DOC
PROVIDE mo_bielec_integrals_erf_in_map
integer :: i,j,k,l
integer :: ii
integer(key_kind) :: idx
real(integral_kind) :: integral
FREE ao_integrals_cache
!$OMP PARALLEL DO PRIVATE (i,j,k,l,idx,ii,integral)
do l=mo_integrals_erf_cache_min,mo_integrals_erf_cache_max
do k=mo_integrals_erf_cache_min,mo_integrals_erf_cache_max
do j=mo_integrals_erf_cache_min,mo_integrals_erf_cache_max
do i=mo_integrals_erf_cache_min,mo_integrals_erf_cache_max
!DIR$ FORCEINLINE
call bielec_integrals_index(i,j,k,l,idx)
!DIR$ FORCEINLINE
call map_get(mo_integrals_erf_map,idx,integral)
ii = l-mo_integrals_erf_cache_min
ii = ior( ishft(ii,6), k-mo_integrals_erf_cache_min)
ii = ior( ishft(ii,6), j-mo_integrals_erf_cache_min)
ii = ior( ishft(ii,6), i-mo_integrals_erf_cache_min)
mo_integrals_erf_cache(ii) = integral
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
END_PROVIDER
double precision function get_mo_bielec_integral_erf(i,j,k,l,map)
use map_module
implicit none
BEGIN_DOC
! Returns one integral <ij|kl> in the MO basis
END_DOC
integer, intent(in) :: i,j,k,l
integer(key_kind) :: idx
integer :: ii
type(map_type), intent(inout) :: map
real(integral_kind) :: tmp
PROVIDE mo_bielec_integrals_erf_in_map mo_integrals_erf_cache
ii = l-mo_integrals_erf_cache_min
ii = ior(ii, k-mo_integrals_erf_cache_min)
ii = ior(ii, j-mo_integrals_erf_cache_min)
ii = ior(ii, i-mo_integrals_erf_cache_min)
if (iand(ii, -64) /= 0) then
!DIR$ FORCEINLINE
call bielec_integrals_index(i,j,k,l,idx)
!DIR$ FORCEINLINE
call map_get(map,idx,tmp)
get_mo_bielec_integral_erf = dble(tmp)
else
ii = l-mo_integrals_erf_cache_min
ii = ior( ishft(ii,6), k-mo_integrals_erf_cache_min)
ii = ior( ishft(ii,6), j-mo_integrals_erf_cache_min)
ii = ior( ishft(ii,6), i-mo_integrals_erf_cache_min)
get_mo_bielec_integral_erf = mo_integrals_erf_cache(ii)
endif
end
double precision function mo_bielec_integral_erf(i,j,k,l)
implicit none
BEGIN_DOC
! Returns one integral <ij|kl> in the MO basis
END_DOC
integer, intent(in) :: i,j,k,l
double precision :: get_mo_bielec_integral_erf
PROVIDE mo_bielec_integrals_erf_in_map mo_integrals_erf_cache
!DIR$ FORCEINLINE
PROVIDE mo_bielec_integrals_erf_in_map
mo_bielec_integral_erf = get_mo_bielec_integral_erf(i,j,k,l,mo_integrals_erf_map)
return
end
subroutine get_mo_bielec_integrals_erf(j,k,l,sze,out_val,map)
use map_module
implicit none
BEGIN_DOC
! Returns multiple integrals <ij|kl> in the MO basis, all
! i for j,k,l fixed.
END_DOC
integer, intent(in) :: j,k,l, sze
double precision, intent(out) :: out_val(sze)
type(map_type), intent(inout) :: map
integer :: i
integer(key_kind) :: hash(sze)
real(integral_kind) :: tmp_val(sze)
PROVIDE mo_bielec_integrals_in_map
do i=1,sze
!DIR$ FORCEINLINE
call bielec_integrals_index(i,j,k,l,hash(i))
enddo
if (key_kind == 8) then
call map_get_many(map, hash, out_val, sze)
else
call map_get_many(map, hash, tmp_val, sze)
! Conversion to double precision
do i=1,sze
out_val(i) = dble(tmp_val(i))
enddo
endif
end
subroutine get_mo_bielec_integrals_erf_ij(k,l,sze,out_array,map)
use map_module
implicit none
BEGIN_DOC
! Returns multiple integrals <ij|kl> in the MO basis, all
! i(1)j(2) 1/r12 k(1)l(2)
! i, j for k,l fixed.
END_DOC
integer, intent(in) :: k,l, sze
double precision, intent(out) :: out_array(sze,sze)
type(map_type), intent(inout) :: map
integer :: i,j,kk,ll,m
integer(key_kind),allocatable :: hash(:)
integer ,allocatable :: pairs(:,:), iorder(:)
real(integral_kind), allocatable :: tmp_val(:)
PROVIDE mo_bielec_integrals_erf_in_map
allocate (hash(sze*sze), pairs(2,sze*sze),iorder(sze*sze), &
tmp_val(sze*sze))
kk=0
out_array = 0.d0
do j=1,sze
do i=1,sze
kk += 1
!DIR$ FORCEINLINE
call bielec_integrals_index(i,j,k,l,hash(kk))
pairs(1,kk) = i
pairs(2,kk) = j
iorder(kk) = kk
enddo
enddo
logical :: integral_is_in_map
if (key_kind == 8) then
call i8radix_sort(hash,iorder,kk,-1)
else if (key_kind == 4) then
call iradix_sort(hash,iorder,kk,-1)
else if (key_kind == 2) then
call i2radix_sort(hash,iorder,kk,-1)
endif
call map_get_many(mo_integrals_erf_map, hash, tmp_val, kk)
do ll=1,kk
m = iorder(ll)
i=pairs(1,m)
j=pairs(2,m)
out_array(i,j) = tmp_val(ll)
enddo
deallocate(pairs,hash,iorder,tmp_val)
end
subroutine get_mo_bielec_integrals_erf_coulomb_ii(k,l,sze,out_val,map)
use map_module
implicit none
BEGIN_DOC
! Returns multiple integrals <ki|li>
! k(1)i(2) 1/r12 l(1)i(2) :: out_val(i1)
! for k,l fixed.
END_DOC
integer, intent(in) :: k,l, sze
double precision, intent(out) :: out_val(sze)
type(map_type), intent(inout) :: map
integer :: i
integer(key_kind) :: hash(sze)
real(integral_kind) :: tmp_val(sze)
PROVIDE mo_bielec_integrals_in_map
integer :: kk
do i=1,sze
!DIR$ FORCEINLINE
call bielec_integrals_index(k,i,l,i,hash(i))
enddo
if (key_kind == 8) then
call map_get_many(map, hash, out_val, sze)
else
call map_get_many(map, hash, tmp_val, sze)
! Conversion to double precision
do i=1,sze
out_val(i) = dble(tmp_val(i))
enddo
endif
end
subroutine get_mo_bielec_integrals_erf_exch_ii(k,l,sze,out_val,map)
use map_module
implicit none
BEGIN_DOC
! Returns multiple integrals <ki|il>
! k(1)i(2) 1/r12 i(1)l(2) :: out_val(i1)
! for k,l fixed.
END_DOC
integer, intent(in) :: k,l, sze
double precision, intent(out) :: out_val(sze)
type(map_type), intent(inout) :: map
integer :: i
integer(key_kind) :: hash(sze)
real(integral_kind) :: tmp_val(sze)
PROVIDE mo_bielec_integrals_erf_in_map
integer :: kk
do i=1,sze
!DIR$ FORCEINLINE
call bielec_integrals_index(k,i,i,l,hash(i))
enddo
if (key_kind == 8) then
call map_get_many(map, hash, out_val, sze)
else
call map_get_many(map, hash, tmp_val, sze)
! Conversion to double precision
do i=1,sze
out_val(i) = dble(tmp_val(i))
enddo
endif
end
integer*8 function get_mo_erf_map_size()
implicit none
BEGIN_DOC
! Return the number of elements in the MO map
END_DOC
get_mo_erf_map_size = mo_integrals_erf_map % n_elements
end