mirror of
https://github.com/LCPQ/quantum_package
synced 2024-12-23 12:56:14 +01:00
.. | ||
.gitignore | ||
ao_bi_integrals.irp.f | ||
EZFIO.cfg | ||
gauss_legendre.irp.f | ||
map_integrals.irp.f | ||
mo_bi_integrals.irp.f | ||
NEEDED_CHILDREN_MODULES | ||
q_package.ezfio_config | ||
read_write.irp.f | ||
README.rst | ||
test_integrals.irp.f | ||
tree_dependency.png |
============= BiInts Module ============= Here, all bi-electronic integrals (:math:`1/r_{12}`) are computed. As they have 4 indices and many are zero, they are stored in a map, as defined in ``Utils/map_module.f90``. To fetch an AO integral, use the ``get_ao_bielec_integral(i,j,k,l,ao_integrals_map)`` function, and to fetch and MO integral, use ``get_mo_bielec_integral(i,j,k,l,mo_integrals_map)`` or ``mo_bielec_integral(i,j,k,l)``. Needed Modules ============== .. Do not edit this section It was auto-generated .. by the `update_README.py` script. .. image:: tree_dependency.png * `Pseudo <http://github.com/LCPQ/quantum_package/tree/master/src/Pseudo>`_ * `Bitmask <http://github.com/LCPQ/quantum_package/tree/master/src/Bitmask>`_ Needed Modules ============== .. Do not edit this section It was auto-generated .. by the `update_README.py` script. .. image:: tree_dependency.png * `Pseudo <http://github.com/LCPQ/quantum_package/tree/master/src/Pseudo>`_ * `Bitmask <http://github.com/LCPQ/quantum_package/tree/master/src/Bitmask>`_ Documentation ============= .. Do not edit this section It was auto-generated .. by the `update_README.py` script. `add_integrals_to_map <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/mo_bi_integrals.irp.f#L42>`_ Adds integrals to tha MO map according to some bitmask `ao_bielec_integral <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L1>`_ integral of the AO basis <ik|jl> or (ij|kl) i(r1) j(r1) 1/r12 k(r2) l(r2) `ao_bielec_integral_schwartz <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L489>`_ Needed to compute Schwartz inequalities `ao_bielec_integral_schwartz_accel <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L107>`_ integral of the AO basis <ik|jl> or (ij|kl) i(r1) j(r1) 1/r12 k(r2) l(r2) `ao_bielec_integrals_in_map <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L322>`_ Map of Atomic integrals i(r1) j(r2) 1/r12 k(r1) l(r2) `ao_integrals_map <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L6>`_ AO integrals `ao_integrals_threshold <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ezfio_interface.irp.f#L46>`_ If |<pq|rs>| < ao_integrals_threshold then <pq|rs> is zero `ao_l4 <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L279>`_ Computes the product of l values of i,j,k,and l `bielec_integrals_index <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L19>`_ Undocumented `bielec_integrals_index_reverse <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L36>`_ Undocumented `clear_ao_map <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L223>`_ Frees the memory of the AO map `clear_mo_map <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L399>`_ Frees the memory of the MO map `compute_ao_bielec_integrals <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L290>`_ Compute AO 1/r12 integrals for all i and fixed j,k,l `disk_access_ao_integrals <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ezfio_interface.irp.f#L28>`_ Read/Write AO integrals from/to disk [ Write | Read | None ] `disk_access_mo_integrals <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ezfio_interface.irp.f#L68>`_ Read/Write MO integrals from/to disk [ Write | Read | None ] `do_direct_integrals <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ezfio_interface.irp.f#L6>`_ Compute integrals on the fly `dump_ao_integrals <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f_template_547#L3>`_ Save to disk the $ao integrals `dump_mo_integrals <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f_template_547#L140>`_ Save to disk the $ao integrals `eri <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L652>`_ ATOMIC PRIMTIVE bielectronic integral between the 4 primitives :: primitive_1 = x1**(a_x) y1**(a_y) z1**(a_z) exp(-alpha * r1**2) primitive_2 = x1**(b_x) y1**(b_y) z1**(b_z) exp(- beta * r1**2) primitive_3 = x2**(c_x) y2**(c_y) z2**(c_z) exp(-delta * r2**2) primitive_4 = x2**(d_x) y2**(d_y) z2**(d_z) exp(- gama * r2**2) `gauleg <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/gauss_legendre.irp.f#L29>`_ Gauss-Legendre `gauleg_t2 <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/gauss_legendre.irp.f#L10>`_ t_w(i,1,k) = w(i) t_w(i,2,k) = t(i) `gauleg_w <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/gauss_legendre.irp.f#L11>`_ t_w(i,1,k) = w(i) t_w(i,2,k) = t(i) `general_primitive_integral <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L514>`_ Computes the integral <pq|rs> where p,q,r,s are Gaussian primitives `get_ao_bielec_integral <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L113>`_ Gets one AO bi-electronic integral from the AO map `get_ao_bielec_integrals <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L137>`_ Gets multiple AO bi-electronic integral from the AO map . All i are retrieved for j,k,l fixed. `get_ao_bielec_integrals_non_zero <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L172>`_ Gets multiple AO bi-electronic integral from the AO map . All non-zero i are retrieved for j,k,l fixed. `get_ao_map_size <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L214>`_ Returns the number of elements in the AO map `get_mo_bielec_integral <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L281>`_ Returns one integral <ij|kl> in the MO basis `get_mo_bielec_integrals <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L310>`_ Returns multiple integrals <ij|kl> in the MO basis, all i for j,k,l fixed. `get_mo_bielec_integrals_existing_ik <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L341>`_ Returns multiple integrals <ij|kl> in the MO basis, all i(1)j(1) 1/r12 k(2)l(2) i for j,k,l fixed. `get_mo_map_size <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L391>`_ Return the number of elements in the MO map `give_polynom_mult_center_x <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L850>`_ subroutine that returns the explicit polynom in term of the "t" variable of the following polynomw : I_x1(a_x, d_x,p,q) * I_x1(a_y, d_y,p,q) * I_x1(a_z, d_z,p,q) `i_x1_new <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L771>`_ recursive function involved in the bielectronic integral `i_x1_pol_mult <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L913>`_ recursive function involved in the bielectronic integral `i_x1_pol_mult_a1 <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L1033>`_ recursive function involved in the bielectronic integral `i_x1_pol_mult_a2 <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L1087>`_ recursive function involved in the bielectronic integral `i_x1_pol_mult_recurs <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L947>`_ recursive function involved in the bielectronic integral `i_x2_new <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L806>`_ recursive function involved in the bielectronic integral `i_x2_pol_mult <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L1149>`_ recursive function involved in the bielectronic integral `insert_into_ao_integrals_map <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L250>`_ Create new entry into AO map `insert_into_mo_integrals_map <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L265>`_ Create new entry into MO map, or accumulate in an existing entry `integrale_new <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L697>`_ calculate the integral of the polynom :: I_x1(a_x+b_x, c_x+d_x,p,q) * I_x1(a_y+b_y, c_y+d_y,p,q) * I_x1(a_z+b_z, c_z+d_z,p,q) between ( 0 ; 1) `load_ao_integrals <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f_template_547#L89>`_ Read from disk the $ao integrals `load_mo_integrals <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f_template_547#L226>`_ Read from disk the $ao integrals `mo_bielec_integral <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L298>`_ Returns one integral <ij|kl> in the MO basis `mo_bielec_integral_jj <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/mo_bi_integrals.irp.f#L465>`_ mo_bielec_integral_jj(i,j) = J_ij mo_bielec_integral_jj_exchange(i,j) = K_ij mo_bielec_integral_jj_anti(i,j) = J_ij - K_ij `mo_bielec_integral_jj_anti <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/mo_bi_integrals.irp.f#L467>`_ mo_bielec_integral_jj(i,j) = J_ij mo_bielec_integral_jj_exchange(i,j) = K_ij mo_bielec_integral_jj_anti(i,j) = J_ij - K_ij `mo_bielec_integral_jj_anti_from_ao <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/mo_bi_integrals.irp.f#L327>`_ mo_bielec_integral_jj_from_ao(i,j) = J_ij mo_bielec_integral_jj_exchange_from_ao(i,j) = J_ij mo_bielec_integral_jj_anti_from_ao(i,j) = J_ij - K_ij `mo_bielec_integral_jj_exchange <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/mo_bi_integrals.irp.f#L466>`_ mo_bielec_integral_jj(i,j) = J_ij mo_bielec_integral_jj_exchange(i,j) = K_ij mo_bielec_integral_jj_anti(i,j) = J_ij - K_ij `mo_bielec_integral_jj_exchange_from_ao <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/mo_bi_integrals.irp.f#L326>`_ mo_bielec_integral_jj_from_ao(i,j) = J_ij mo_bielec_integral_jj_exchange_from_ao(i,j) = J_ij mo_bielec_integral_jj_anti_from_ao(i,j) = J_ij - K_ij `mo_bielec_integral_jj_from_ao <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/mo_bi_integrals.irp.f#L325>`_ mo_bielec_integral_jj_from_ao(i,j) = J_ij mo_bielec_integral_jj_exchange_from_ao(i,j) = J_ij mo_bielec_integral_jj_anti_from_ao(i,j) = J_ij - K_ij `mo_bielec_integrals_in_map <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/mo_bi_integrals.irp.f#L22>`_ If True, the map of MO bielectronic integrals is provided `mo_bielec_integrals_index <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/mo_bi_integrals.irp.f#L1>`_ Computes an unique index for i,j,k,l integrals `mo_integrals_map <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/map_integrals.irp.f#L237>`_ MO integrals `mo_integrals_threshold <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ezfio_interface.irp.f#L86>`_ If |<ij|kl>| < ao_integrals_threshold then <pq|rs> is zero `n_pt_max_integrals_16 <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/gauss_legendre.irp.f#L1>`_ Aligned n_pt_max_integrals `n_pt_sup <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/ao_bi_integrals.irp.f#L836>`_ Returns the upper boundary of the degree of the polynomial involved in the bielctronic integral : Ix(a_x,b_x,c_x,d_x) * Iy(a_y,b_y,c_y,d_y) * Iz(a_z,b_z,c_z,d_z) `read_ao_integrals <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/read_write.irp.f#L1>`_ One level of abstraction for disk_access_ao_integrals and disk_access_mo_integrals `read_mo_integrals <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/read_write.irp.f#L2>`_ One level of abstraction for disk_access_ao_integrals and disk_access_mo_integrals `write_ao_integrals <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/read_write.irp.f#L3>`_ One level of abstraction for disk_access_ao_integrals and disk_access_mo_integrals `write_mo_integrals <http://github.com/LCPQ/quantum_package/tree/master/src/Integrals_Bielec/read_write.irp.f#L4>`_ One level of abstraction for disk_access_ao_integrals and disk_access_mo_integrals