mirror of
https://github.com/LCPQ/quantum_package
synced 2024-11-05 05:33:56 +01:00
188 lines
4.6 KiB
OCaml
188 lines
4.6 KiB
OCaml
open Qptypes
|
|
open Sexplib.Std
|
|
|
|
type t = S|P|D|F|G|H|I|J|K|L [@@deriving sexp]
|
|
|
|
let to_string = function
|
|
| S -> "S"
|
|
| P -> "P"
|
|
| D -> "D"
|
|
| F -> "F"
|
|
| G -> "G"
|
|
| H -> "H"
|
|
| I -> "I"
|
|
| J -> "J"
|
|
| K -> "K"
|
|
| L -> "L"
|
|
|
|
let of_string = function
|
|
| "S" | "s" -> S
|
|
| "P" | "p" -> P
|
|
| "D" | "d" -> D
|
|
| "F" | "f" -> F
|
|
| "G" | "g" -> G
|
|
| "H" | "h" -> H
|
|
| "I" | "i" -> I
|
|
| "J" | "j" -> J
|
|
| "K" | "k" -> K
|
|
| "L" | "l" -> L
|
|
| x -> raise (Failure ("Symmetry should be S|P|D|F|G|H|I|J|K|L,
|
|
not "^x^"."))
|
|
|
|
let of_char = function
|
|
| 'S' | 's' -> S
|
|
| 'P' | 'p' -> P
|
|
| 'D' | 'd' -> D
|
|
| 'F' | 'f' -> F
|
|
| 'G' | 'g' -> G
|
|
| 'H' | 'h' -> H
|
|
| 'I' | 'i' -> I
|
|
| 'J' | 'j' -> J
|
|
| 'K' | 'k' -> K
|
|
| 'L' | 'l' -> L
|
|
| x -> raise (Failure ("Symmetry should be S|P|D|F|G|H|I|J|K|L"))
|
|
|
|
let to_l = function
|
|
| S -> Positive_int.of_int 0
|
|
| P -> Positive_int.of_int 1
|
|
| D -> Positive_int.of_int 2
|
|
| F -> Positive_int.of_int 3
|
|
| G -> Positive_int.of_int 4
|
|
| H -> Positive_int.of_int 5
|
|
| I -> Positive_int.of_int 6
|
|
| J -> Positive_int.of_int 7
|
|
| K -> Positive_int.of_int 8
|
|
| L -> Positive_int.of_int 9
|
|
|
|
|
|
let of_l i =
|
|
let i = Positive_int.to_int i in
|
|
match i with
|
|
| 0 -> S
|
|
| 1 -> P
|
|
| 2 -> D
|
|
| 3 -> F
|
|
| 4 -> G
|
|
| 5 -> H
|
|
| 6 -> I
|
|
| 7 -> J
|
|
| 8 -> K
|
|
| 9 -> L
|
|
| x -> raise (Failure ("Symmetry should be S|P|D|F|G|H|I|J|K|L"))
|
|
|
|
|
|
type st = t
|
|
|
|
|
|
module Xyz = struct
|
|
type t = { x: Positive_int.t ;
|
|
y: Positive_int.t ;
|
|
z: Positive_int.t } [@@deriving sexp]
|
|
type state_type = Null | X | Y | Z
|
|
|
|
(** Builds an XYZ triplet from a string.
|
|
* The input string is like "x2z3" *)
|
|
let of_string s =
|
|
let flush state accu number =
|
|
let n =
|
|
if (number = "") then 1
|
|
else (int_of_string number)
|
|
in
|
|
match state with
|
|
| X -> { x= Positive_int.(of_int ( (to_int accu.x) +n));
|
|
y= accu.y ;
|
|
z= accu.z }
|
|
| Y -> { x= accu.x ;
|
|
y= Positive_int.(of_int ( (to_int accu.y) +n));
|
|
z= accu.z }
|
|
| Z -> { x= accu.x ;
|
|
y= accu.y ;
|
|
z= Positive_int.(of_int ( (to_int accu.z) +n))}
|
|
| Null -> accu
|
|
in
|
|
let rec do_work state accu number = function
|
|
| [] -> flush state accu number
|
|
| 'X'::rest | 'x'::rest ->
|
|
let new_accu = flush state accu number in
|
|
do_work X new_accu "" rest
|
|
| 'Y'::rest | 'y'::rest ->
|
|
let new_accu = flush state accu number in
|
|
do_work Y new_accu "" rest
|
|
| 'Z'::rest | 'z'::rest ->
|
|
let new_accu = flush state accu number in
|
|
do_work Z new_accu "" rest
|
|
| c::rest -> do_work state accu (number^(String_ext.of_char c)) rest
|
|
in
|
|
String_ext.to_list s
|
|
|> do_work Null
|
|
{ x=Positive_int.of_int 0 ;
|
|
y=Positive_int.of_int 0 ;
|
|
z=Positive_int.of_int 0 } ""
|
|
|
|
|
|
(** Transforms an XYZ triplet to a string *)
|
|
let to_string t =
|
|
let x = match (Positive_int.to_int t.x) with
|
|
| 0 -> ""
|
|
| 1 -> "x"
|
|
| i -> Printf.sprintf "x%d" i
|
|
and y = match (Positive_int.to_int t.y) with
|
|
| 0 -> ""
|
|
| 1 -> "y"
|
|
| i -> Printf.sprintf "y%d" i
|
|
and z = match (Positive_int.to_int t.z) with
|
|
| 0 -> ""
|
|
| 1 -> "z"
|
|
| i -> Printf.sprintf "z%d" i
|
|
in
|
|
let result = (x^y^z) in
|
|
if (result = "") then "s"
|
|
else result
|
|
|
|
|
|
(** Returns the l quantum number from a XYZ powers triplet *)
|
|
let get_l t =
|
|
let x = Positive_int.to_int t.x
|
|
and y = Positive_int.to_int t.y
|
|
and z = Positive_int.to_int t.z
|
|
in Positive_int.of_int (x+y+z)
|
|
|
|
|
|
(** Returns a list of XYZ powers for a given symmetry *)
|
|
let of_symmetry sym =
|
|
let l = Positive_int.to_int (to_l sym) in
|
|
let create_z xyz =
|
|
{ x=xyz.x ;
|
|
y=xyz.y ;
|
|
z=Positive_int.(of_int (l-((to_int xyz.x)+(to_int xyz.y))))
|
|
}
|
|
in
|
|
let rec create_y accu xyz =
|
|
let {x ; y ; z} = xyz in
|
|
match (Positive_int.to_int y) with
|
|
| 0 -> (create_z xyz)::accu
|
|
| i ->
|
|
let ynew = Positive_int.( (to_int y)-1 |> of_int) in
|
|
create_y ( (create_z xyz)::accu) { x ; y=ynew ; z}
|
|
in
|
|
let rec create_x accu xyz =
|
|
let {x ; y ; z} = xyz in
|
|
match (Positive_int.to_int x) with
|
|
| 0 -> (create_y [] xyz)@accu
|
|
| i ->
|
|
let xnew = Positive_int.( (to_int x)-1 |> of_int) in
|
|
let ynew = Positive_int.(l-(to_int xnew) |> of_int)
|
|
in
|
|
create_x ((create_y [] xyz)@accu) { x=xnew ; y=ynew ; z}
|
|
in
|
|
create_x [] { x=(to_l sym) ; y=Positive_int.of_int 0 ;
|
|
z=Positive_int.of_int 0 }
|
|
|> List.rev
|
|
|
|
|
|
(** Returns the symmetry corresponding to the XYZ triplet *)
|
|
let to_symmetry sym = of_l (get_l sym)
|
|
|
|
end
|
|
|