10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-11-19 12:32:34 +01:00
quantum_package/plugins/mrsc2_no_amp/mrsc2_no_amp.irp.f

130 lines
4.8 KiB
Fortran

BEGIN_PROVIDER [double precision, CI_eigenvectors_sc2_no_amp, (N_det,N_states_diag)]
&BEGIN_PROVIDER [double precision, CI_eigenvectors_s2_sc2_no_amp, (N_states_diag)]
&BEGIN_PROVIDER [double precision, CI_electronic_energy_sc2_no_amp, (N_states_diag)]
implicit none
integer :: i,j,k,l
integer, allocatable :: idx(:)
integer, allocatable :: holes_part(:,:)
double precision, allocatable :: e_corr(:,:)
double precision, allocatable :: accu(:)
double precision, allocatable :: ihpsi_current(:)
double precision, allocatable :: H_jj(:),H_jj_total(:),S2_jj(:)
integer :: number_of_particles, number_of_holes, n_h,n_p
allocate(e_corr(N_det_non_ref,N_states),ihpsi_current(N_states),accu(N_states),H_jj(N_det_non_ref),idx(0:N_det_non_ref))
allocate(H_jj_total(N_det),S2_jj(N_det))
allocate(holes_part(N_det,2))
accu = 0.d0
do i = 1, N_det_non_ref
holes_part(i,1) = number_of_holes(psi_non_ref(1,1,i))
holes_part(i,2) = number_of_particles(psi_non_ref(1,1,i))
call i_h_psi(psi_non_ref(1,1,i), psi_ref, psi_ref_coef, N_int, N_det_ref,&
size(psi_ref_coef_interm_norm,1), N_states,ihpsi_current)
do j = 1, N_states
e_corr(i,j) = psi_non_ref_coef(i,j) * ihpsi_current(j) * inv_norm_psi_ref(j)
accu(j) += e_corr(i,j)
enddo
enddo
print *, 'accu = ',accu
double precision :: hjj,diag_h_mat_elem
do i = 1, N_det_non_ref
H_jj(i) = 0.d0
n_h = holes_part(i,1)
n_p = holes_part(i,2)
integer :: degree
! do j = 1, N_det_non_ref
! call get_excitation_degree(psi_non_ref(1,1,i),psi_non_ref(1,1,j),degree,N_int)
! if(degree .gt. 2)then
! if(n_h + holes_part(j,1) .gt. 2 .or. n_p + holes_part(j,2) .gt. 2 ) then
! H_jj(i) += e_corr(j,1)
! endif
! endif
! enddo
call filter_not_connected(psi_non_ref,psi_non_ref(1,1,i),N_int,N_det_non_ref,idx)
do j = 1, idx(0)
if(n_h + holes_part(idx(j),1) .gt. 2 .or. n_p + holes_part(idx(j),2) .gt. 2 ) then
H_jj(i) += e_corr(idx(j),1)
endif
enddo
enddo
do i=1,N_Det
H_jj_total(i) = diag_h_mat_elem(psi_det(1,1,i),N_int)
call get_s2(psi_det(1,1,i),psi_det(1,1,i),N_int,S2_jj(i))
enddo
do i = 1, N_det_non_ref
H_jj_total(idx_non_ref(i)) += H_jj(i)
enddo
print *, 'coef'
call davidson_diag_hjj_sjj(psi_det,CI_eigenvectors_sc2_no_amp,H_jj_total,S2_jj,CI_electronic_energy_sc2_no_amp,size(CI_eigenvectors_sc2_no_amp,1),N_Det,N_states,N_states_diag,N_int,6)
do i = 1, N_det
hjj = diag_h_mat_elem(psi_det(1,1,i),N_int)
! if(hjj<-210.d0)then
! call debug_det(psi_det(1,1,i),N_int)
! print *, CI_eigenvectors_sc2_no_amp((i),1),hjj, H_jj_total(i)
! endif
enddo
print *, 'ref',N_det_ref
do i =1, N_det_ref
call debug_det(psi_det(1,1,idx_ref(i)),N_int)
print *, CI_eigenvectors_sc2_no_amp(idx_ref(i),1), H_jj_total(idx_ref(i))
enddo
print *, 'non ref',N_det_non_ref
do i=1, N_det_non_ref
hjj = diag_h_mat_elem(psi_non_ref(1,1,i),N_int)
! print *, CI_eigenvectors_sc2_no_amp(idx_non_ref(i),1),H_jj_total(idx_non_ref(i)), H_jj(i)
! if(dabs(CI_eigenvectors_sc2_no_amp(idx_non_ref(i),1)).gt.1.d-1)then
! if(hjj<-210.d0)then
! call debug_det(psi_det(1,1,idx_non_ref(i)),N_int)
! write(*,'(10(F16.10,X))') CI_eigenvectors_sc2_no_amp(idx_non_ref(i),1),hjj, H_jj(i),H_jj_total(idx_non_ref(i))
! endif
enddo
! do i = 1, N_det
! print *, CI_eigenvectors_sc2_no_amp(i,1)
! enddo
do i=1,N_states_diag
CI_eigenvectors_s2_sc2_no_amp(i) = S2_jj(i)
enddo
deallocate(e_corr,ihpsi_current,accu,H_jj,idx,H_jj_total,s2_jj,holes_part)
END_PROVIDER
BEGIN_PROVIDER [ double precision, CI_energy_sc2_no_amp, (N_states_diag) ]
implicit none
BEGIN_DOC
! N_states lowest eigenvalues of the CI matrix
END_DOC
integer :: j
character*(8) :: st
call write_time(output_determinants)
do j=1,min(N_det,N_states_diag)
CI_energy_sc2_no_amp(j) = CI_electronic_energy_sc2_no_amp(j) + nuclear_repulsion
enddo
do j=1,min(N_det,N_states)
write(st,'(I4)') j
call write_double(output_determinants,CI_energy_sc2_no_amp(j),'Energy of state '//trim(st))
call write_double(output_determinants,CI_eigenvectors_s2_sc2_no_amp(j),'S^2 of state '//trim(st))
enddo
END_PROVIDER
subroutine diagonalize_CI_sc2_no_amp
implicit none
integer :: i,j
do j=1,N_states
do i=1,N_det
psi_coef(i,j) = CI_eigenvectors_sc2_no_amp(i,j)
enddo
enddo
SOFT_TOUCH ci_eigenvectors_s2_sc2_no_amp ci_eigenvectors_sc2_no_amp ci_electronic_energy_sc2_no_amp ci_energy_sc2_no_amp psi_coef
end