mirror of
https://github.com/LCPQ/quantum_package
synced 2024-12-28 23:26:09 +01:00
.. | ||
e_corr_selectors.irp.f | ||
NEEDED_CHILDREN_MODULES | ||
README.rst | ||
selectors.irp.f | ||
zmq.irp.f |
===================== Selectors_full Module ===================== Needed Modules ============== .. Do not edit this section It was auto-generated .. by the `update_README.py` script. .. image:: tree_dependency.png * `Determinants <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants>`_ * `Hartree_Fock <http://github.com/LCPQ/quantum_package/tree/master/src/Hartree_Fock>`_ Needed Modules ============== .. Do not edit this section It was auto-generated .. by the `update_README.py` script. .. image:: tree_dependency.png * `Determinants <http://github.com/LCPQ/quantum_package/tree/master/src/Determinants>`_ Documentation ============= .. Do not edit this section It was auto-generated .. by the `update_README.py` script. `a_coef <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/need.irp.f#L251>`_ Undocumented `add_poly <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/integration.irp.f#L302>`_ Add two polynomials D(t) =! D(t) +( B(t)+C(t)) `add_poly_multiply <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/integration.irp.f#L330>`_ Add a polynomial multiplied by a constant D(t) =! D(t) +( cst * B(t)) `apply_rotation <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/LinearAlgebra.irp.f#L367>`_ Apply the rotation found by find_rotation `approx_dble <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/util.irp.f#L340>`_ Undocumented `b_coef <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/need.irp.f#L256>`_ Undocumented `binom <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/util.irp.f#L31>`_ Binomial coefficients `binom_func <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/util.irp.f#L1>`_ .. math :: .br \frac{i!}{j!(i-j)!} .br `binom_transp <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/util.irp.f#L32>`_ Binomial coefficients `coef_hf_selector <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/e_corr_selectors.irp.f#L27>`_ energy of correlation per determinant respect to the Hartree Fock determinant .br for the all the double excitations in the selectors determinants .br E_corr_per_selectors(i) = <D_i|H|HF> * c(D_i)/c(HF) if |D_i> is a double excitation .br E_corr_per_selectors(i) = -1000.d0 if it is not a double excitation .br coef_hf_selector = coefficient of the Hartree Fock determinant in the selectors determinants `dble_fact <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/util.irp.f#L122>`_ Undocumented `dble_fact_even <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/util.irp.f#L139>`_ n!! `dble_fact_odd <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/util.irp.f#L183>`_ n!! `dble_logfact <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/util.irp.f#L217>`_ n!! `ddfact2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/need.irp.f#L242>`_ Undocumented `degree_max_integration_lebedev <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/angular_integration.irp.f#L1>`_ integrate correctly a polynom of order "degree_max_integration_lebedev" needed for the angular integration according to LEBEDEV formulae `delta_e_per_selector <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/e_corr_selectors.irp.f#L32>`_ energy of correlation per determinant respect to the Hartree Fock determinant .br for the all the double excitations in the selectors determinants .br E_corr_per_selectors(i) = <D_i|H|HF> * c(D_i)/c(HF) if |D_i> is a double excitation .br E_corr_per_selectors(i) = -1000.d0 if it is not a double excitation .br coef_hf_selector = coefficient of the Hartree Fock determinant in the selectors determinants `double_index_selectors <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/e_corr_selectors.irp.f#L3>`_ degree of excitation respect to Hartree Fock for the wave function .br for the all the selectors determinants .br double_index_selectors = list of the index of the double excitations .br n_double_selectors = number of double excitations in the selectors determinants `dset_order <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_323#L27>`_ array A has already been sorted, and iorder has contains the new order of elements of A. This subroutine changes the order of x to match the new order of A. `dset_order_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_388#L90>`_ array A has already been sorted, and iorder has contains the new order of elements of A. This subroutine changes the order of x to match the new order of A. This is a version for very large arrays where the indices need to be in integer*8 format `dsort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_270#L30>`_ Sort array x(isize). iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. `dtranspose <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/transpose.irp.f#L41>`_ Transpose input matrix A into output matrix B `e_corr_double_only <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/e_corr_selectors.irp.f#L33>`_ energy of correlation per determinant respect to the Hartree Fock determinant .br for the all the double excitations in the selectors determinants .br E_corr_per_selectors(i) = <D_i|H|HF> * c(D_i)/c(HF) if |D_i> is a double excitation .br E_corr_per_selectors(i) = -1000.d0 if it is not a double excitation .br coef_hf_selector = coefficient of the Hartree Fock determinant in the selectors determinants `e_corr_per_selectors <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/e_corr_selectors.irp.f#L30>`_ energy of correlation per determinant respect to the Hartree Fock determinant .br for the all the double excitations in the selectors determinants .br E_corr_per_selectors(i) = <D_i|H|HF> * c(D_i)/c(HF) if |D_i> is a double excitation .br E_corr_per_selectors(i) = -1000.d0 if it is not a double excitation .br coef_hf_selector = coefficient of the Hartree Fock determinant in the selectors determinants `e_corr_second_order <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/e_corr_selectors.irp.f#L34>`_ energy of correlation per determinant respect to the Hartree Fock determinant .br for the all the double excitations in the selectors determinants .br E_corr_per_selectors(i) = <D_i|H|HF> * c(D_i)/c(HF) if |D_i> is a double excitation .br E_corr_per_selectors(i) = -1000.d0 if it is not a double excitation .br coef_hf_selector = coefficient of the Hartree Fock determinant in the selectors determinants `erf0 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/need.irp.f#L104>`_ Undocumented `exc_degree_per_selectors <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/e_corr_selectors.irp.f#L2>`_ degree of excitation respect to Hartree Fock for the wave function .br for the all the selectors determinants .br double_index_selectors = list of the index of the double excitations .br n_double_selectors = number of double excitations in the selectors determinants `extrapolate_data <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/extrapolation.irp.f#L1>`_ Extrapolate the data to the FCI limit `f_integral <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/integration.irp.f#L404>`_ function that calculates the following integral \int_{\-infty}^{+\infty} x^n \exp(-p x^2) dx `fact <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/util.irp.f#L49>`_ n! `fact_inv <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/util.irp.f#L109>`_ 1/n! `find_rotation <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/LinearAlgebra.irp.f#L348>`_ Find A.C = B `gammln <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/need.irp.f#L270>`_ Undocumented `gammp <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/need.irp.f#L132>`_ Undocumented `gaussian_product <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/integration.irp.f#L181>`_ Gaussian product in 1D. e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2} `gaussian_product_x <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/integration.irp.f#L223>`_ Gaussian product in 1D. e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2} `gcf <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/need.irp.f#L210>`_ Undocumented `get_inverse <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/LinearAlgebra.irp.f#L266>`_ Returns the inverse of the square matrix A `get_pseudo_inverse <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/LinearAlgebra.irp.f#L294>`_ Find C = A^-1 `give_explicit_poly_and_gaussian <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/integration.irp.f#L46>`_ Transforms the product of (x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3) exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta) into fact_k * [ sum (l_x = 0,i_order(1)) P_new(l_x,1) * (x-P_center(1))^l_x ] exp (- p (x-P_center(1))^2 ) * [ sum (l_y = 0,i_order(2)) P_new(l_y,2) * (y-P_center(2))^l_y ] exp (- p (y-P_center(2))^2 ) * [ sum (l_z = 0,i_order(3)) P_new(l_z,3) * (z-P_center(3))^l_z ] exp (- p (z-P_center(3))^2 ) `give_explicit_poly_and_gaussian_double <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/integration.irp.f#L119>`_ Transforms the product of (x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3) exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta) exp(-(r-Nucl_center)^2 gama .br into fact_k * [ sum (l_x = 0,i_order(1)) P_new(l_x,1) * (x-P_center(1))^l_x ] exp (- p (x-P_center(1))^2 ) * [ sum (l_y = 0,i_order(2)) P_new(l_y,2) * (y-P_center(2))^l_y ] exp (- p (y-P_center(2))^2 ) * [ sum (l_z = 0,i_order(3)) P_new(l_z,3) * (z-P_center(3))^l_z ] exp (- p (z-P_center(3))^2 ) `give_explicit_poly_and_gaussian_x <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/integration.irp.f#L1>`_ Transform the product of (x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3) exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta) into fact_k (x-x_P)^iorder(1) (y-y_P)^iorder(2) (z-z_P)^iorder(3) exp(-p(r-P)^2) `gser <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/need.irp.f#L166>`_ Undocumented `heap_dsort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_238#L312>`_ Sort array x(isize) using the heap sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. `heap_dsort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_238#L375>`_ Sort array x(isize) using the heap sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. This is a version for very large arrays where the indices need to be in integer*8 format `heap_i2sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_238#L1008>`_ Sort array x(isize) using the heap sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. `heap_i2sort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_238#L1071>`_ Sort array x(isize) using the heap sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. This is a version for very large arrays where the indices need to be in integer*8 format `heap_i8sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_238#L776>`_ Sort array x(isize) using the heap sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. `heap_i8sort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_238#L839>`_ Sort array x(isize) using the heap sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. This is a version for very large arrays where the indices need to be in integer*8 format `heap_isort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_238#L544>`_ Sort array x(isize) using the heap sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. `heap_isort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_238#L607>`_ Sort array x(isize) using the heap sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. This is a version for very large arrays where the indices need to be in integer*8 format `heap_sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_238#L80>`_ Sort array x(isize) using the heap sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. `heap_sort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_238#L143>`_ Sort array x(isize) using the heap sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. This is a version for very large arrays where the indices need to be in integer*8 format `hermite <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/integration.irp.f#L536>`_ Hermite polynomial `i2radix_sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_605#L423>`_ Sort integer array x(isize) using the radix sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. iradix should be -1 in input. `i2set_order <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_323#L102>`_ array A has already been sorted, and iorder has contains the new order of elements of A. This subroutine changes the order of x to match the new order of A. `i2set_order_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_388#L261>`_ array A has already been sorted, and iorder has contains the new order of elements of A. This subroutine changes the order of x to match the new order of A. This is a version for very large arrays where the indices need to be in integer*8 format `i2sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_291#L34>`_ Sort array x(isize). iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. `i8radix_sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_605#L213>`_ Sort integer array x(isize) using the radix sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. iradix should be -1 in input. `i8radix_sort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_605#L843>`_ Sort integer array x(isize) using the radix sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. iradix should be -1 in input. `i8set_order <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_323#L77>`_ array A has already been sorted, and iorder has contains the new order of elements of A. This subroutine changes the order of x to match the new order of A. `i8set_order_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_388#L204>`_ array A has already been sorted, and iorder has contains the new order of elements of A. This subroutine changes the order of x to match the new order of A. This is a version for very large arrays where the indices need to be in integer*8 format `i8sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_291#L18>`_ Sort array x(isize). iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. `i_h_hf_per_selectors <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/e_corr_selectors.irp.f#L31>`_ energy of correlation per determinant respect to the Hartree Fock determinant .br for the all the double excitations in the selectors determinants .br E_corr_per_selectors(i) = <D_i|H|HF> * c(D_i)/c(HF) if |D_i> is a double excitation .br E_corr_per_selectors(i) = -1000.d0 if it is not a double excitation .br coef_hf_selector = coefficient of the Hartree Fock determinant in the selectors determinants `insertion_dsort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_238#L234>`_ Sort array x(isize) using the insertion sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. `insertion_dsort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_388#L59>`_ Sort array x(isize) using the insertion sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. This is a version for very large arrays where the indices need to be in integer*8 format `insertion_i2sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_238#L930>`_ Sort array x(isize) using the insertion sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. `insertion_i2sort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_388#L230>`_ Sort array x(isize) using the insertion sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. This is a version for very large arrays where the indices need to be in integer*8 format `insertion_i8sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_238#L698>`_ Sort array x(isize) using the insertion sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. `insertion_i8sort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_388#L173>`_ Sort array x(isize) using the insertion sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. This is a version for very large arrays where the indices need to be in integer*8 format `insertion_isort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_238#L466>`_ Sort array x(isize) using the insertion sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. `insertion_isort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_388#L116>`_ Sort array x(isize) using the insertion sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. This is a version for very large arrays where the indices need to be in integer*8 format `insertion_sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_238#L2>`_ Sort array x(isize) using the insertion sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. `insertion_sort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_388#L2>`_ Sort array x(isize) using the insertion sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. This is a version for very large arrays where the indices need to be in integer*8 format `inv_int <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/util.irp.f#L248>`_ 1/i `inv_selectors_coef_hf <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/e_corr_selectors.irp.f#L28>`_ energy of correlation per determinant respect to the Hartree Fock determinant .br for the all the double excitations in the selectors determinants .br E_corr_per_selectors(i) = <D_i|H|HF> * c(D_i)/c(HF) if |D_i> is a double excitation .br E_corr_per_selectors(i) = -1000.d0 if it is not a double excitation .br coef_hf_selector = coefficient of the Hartree Fock determinant in the selectors determinants `inv_selectors_coef_hf_squared <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/e_corr_selectors.irp.f#L29>`_ energy of correlation per determinant respect to the Hartree Fock determinant .br for the all the double excitations in the selectors determinants .br E_corr_per_selectors(i) = <D_i|H|HF> * c(D_i)/c(HF) if |D_i> is a double excitation .br E_corr_per_selectors(i) = -1000.d0 if it is not a double excitation .br coef_hf_selector = coefficient of the Hartree Fock determinant in the selectors determinants `iradix_sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_605#L3>`_ Sort integer array x(isize) using the radix sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. iradix should be -1 in input. `iradix_sort_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_605#L633>`_ Sort integer array x(isize) using the radix sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. iradix should be -1 in input. `iset_order <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_323#L52>`_ array A has already been sorted, and iorder has contains the new order of elements of A. This subroutine changes the order of x to match the new order of A. `iset_order_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_388#L147>`_ array A has already been sorted, and iorder has contains the new order of elements of A. This subroutine changes the order of x to match the new order of A. This is a version for very large arrays where the indices need to be in integer*8 format `isort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_291#L2>`_ Sort array x(isize). iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. `lapack_diag <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/LinearAlgebra.irp.f#L446>`_ Diagonalize matrix H .br H is untouched between input and ouptut .br eigevalues(i) = ith lowest eigenvalue of the H matrix .br eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector .br `lapack_diag_s2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/LinearAlgebra.irp.f#L514>`_ Diagonalize matrix H .br H is untouched between input and ouptut .br eigevalues(i) = ith lowest eigenvalue of the H matrix .br eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector .br `lapack_diagd <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/LinearAlgebra.irp.f#L379>`_ Diagonalize matrix H .br H is untouched between input and ouptut .br eigevalues(i) = ith lowest eigenvalue of the H matrix .br eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector .br `lapack_partial_diag <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/LinearAlgebra.irp.f#L580>`_ Diagonalize matrix H .br H is untouched between input and ouptut .br eigevalues(i) = ith lowest eigenvalue of the H matrix .br eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector .br `logfact <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/util.irp.f#L77>`_ n! `lowercase <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/util.irp.f#L364>`_ Transform to lower case `map_load_from_disk <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/map_functions.irp.f#L66>`_ Undocumented `map_save_to_disk <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/map_functions.irp.f#L1>`_ Undocumented `matrix_vector_product <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/LinearAlgebra.irp.f#L661>`_ performs u1 =! performs u1 +( u0 * matrix) `multiply_poly <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/integration.irp.f#L261>`_ Multiply two polynomials D(t) =! D(t) +( B(t)*C(t)) `n_double_selectors <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/e_corr_selectors.irp.f#L4>`_ degree of excitation respect to Hartree Fock for the wave function .br for the all the selectors determinants .br double_index_selectors = list of the index of the double excitations .br n_double_selectors = number of double excitations in the selectors determinants `n_points_integration_angular_lebedev <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/angular_integration.irp.f#L11>`_ Number of points needed for the angular integral `normalize <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/util.irp.f#L318>`_ Normalizes vector u `nproc <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/util.irp.f#L274>`_ Number of current OpenMP threads `ortho_canonical <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/LinearAlgebra.irp.f#L45>`_ Compute C_new=C_old.U.s^-1/2 canonical orthogonalization. .br overlap : overlap matrix .br LDA : leftmost dimension of overlap array .br N : Overlap matrix is NxN (array is (LDA,N) ) .br C : Coefficients of the vectors to orthogonalize. On exit, orthogonal vectors .br LDC : leftmost dimension of C .br m : Coefficients matrix is MxN, ( array is (LDC,N) ) .br `ortho_lowdin <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/LinearAlgebra.irp.f#L182>`_ Compute C_new=C_old.S^-1/2 orthogonalization. .br overlap : overlap matrix .br LDA : leftmost dimension of overlap array .br N : Overlap matrix is NxN (array is (LDA,N) ) .br C : Coefficients of the vectors to orthogonalize. On exit, orthogonal vectors .br LDC : leftmost dimension of C .br M : Coefficients matrix is MxN, ( array is (LDC,N) ) .br `ortho_qr <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/LinearAlgebra.irp.f#L123>`_ Orthogonalization using Q.R factorization .br A : matrix to orthogonalize .br LDA : leftmost dimension of A .br n : Number of rows of A .br m : Number of columns of A .br `ortho_qr_unblocked <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/LinearAlgebra.irp.f#L155>`_ Orthogonalization using Q.R factorization .br A : matrix to orthogonalize .br LDA : leftmost dimension of A .br n : Number of rows of A .br m : Number of columns of A .br `overlap_a_b_c <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/one_e_integration.irp.f#L35>`_ Undocumented `overlap_gaussian_x <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/one_e_integration.irp.f#L1>`_ .. math:: .br \sum_{-infty}^{+infty} (x-A_x)^ax (x-B_x)^bx exp(-alpha(x-A_x)^2) exp(-beta(x-B_X)^2) dx .br `overlap_gaussian_xyz <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/one_e_integration.irp.f#L113>`_ .. math:: .br S_x = \int (x-A_x)^{a_x} exp(-\alpha(x-A_x)^2) (x-B_x)^{b_x} exp(-beta(x-B_x)^2) dx \\ S = S_x S_y S_z .br `overlap_x_abs <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/one_e_integration.irp.f#L175>`_ .. math :: .br \int_{-infty}^{+infty} (x-A_center)^(power_A) * (x-B_center)^power_B * exp(-alpha(x-A_center)^2) * exp(-beta(x-B_center)^2) dx .br `phi_angular_integration_lebedev <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/angular_integration.irp.f#L41>`_ Theta phi values together with the weights values for the angular integration : integral [dphi,dtheta] f(x,y,z) = 4 * pi * sum (1<i<n_points_integration_angular_lebedev) f(xi,yi,zi) Note that theta and phi are in DEGREES !! `progress_active <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/progress.irp.f#L29>`_ Current status for displaying progress bars. Global variable. `progress_bar <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/progress.irp.f#L27>`_ Current status for displaying progress bars. Global variable. `progress_timeout <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/progress.irp.f#L28>`_ Current status for displaying progress bars. Global variable. `progress_title <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/progress.irp.f#L31>`_ Current status for displaying progress bars. Global variable. `progress_value <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/progress.irp.f#L30>`_ Current status for displaying progress bars. Global variable. `psi_selectors_coef_transp <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/selectors.irp.f#L8>`_ Transposed psi_selectors `psi_selectors_diag_h_mat <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/selectors.irp.f#L22>`_ Diagonal elements of the H matrix for each selectors `psi_selectors_size <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/selectors.irp.f#L3>`_ Undocumented `quick_dsort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_238#L262>`_ Sort array x(isize) using the quicksort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. `quick_i2sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_238#L958>`_ Sort array x(isize) using the quicksort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. `quick_i8sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_238#L726>`_ Sort array x(isize) using the quicksort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. `quick_isort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_238#L494>`_ Sort array x(isize) using the quicksort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. `quick_sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_238#L30>`_ Sort array x(isize) using the quicksort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. `rec__quicksort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_238#L43>`_ Undocumented `rec_d_quicksort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_238#L275>`_ Undocumented `rec_i2_quicksort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_238#L971>`_ Undocumented `rec_i8_quicksort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_238#L739>`_ Undocumented `rec_i_quicksort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_238#L507>`_ Undocumented `recentered_poly2 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/integration.irp.f#L359>`_ Recenter two polynomials `rint <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/integration.irp.f#L432>`_ .. math:: .br \int_0^1 dx \exp(-p x^2) x^n .br `rint1 <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/integration.irp.f#L592>`_ Standard version of rint `rint_large_n <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/integration.irp.f#L561>`_ Version of rint for large values of n `rint_sum <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/integration.irp.f#L480>`_ Needed for the calculation of two-electron integrals. `rinteg <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/need.irp.f#L46>`_ Undocumented `rintgauss <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/need.irp.f#L30>`_ Undocumented `run_progress <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/progress.irp.f#L45>`_ Display a progress bar with documentation of what is happening `sabpartial <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/need.irp.f#L2>`_ Undocumented `set_order <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_323#L2>`_ array A has already been sorted, and iorder has contains the new order of elements of A. This subroutine changes the order of x to match the new order of A. `set_order_big <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_388#L33>`_ array A has already been sorted, and iorder has contains the new order of elements of A. This subroutine changes the order of x to match the new order of A. This is a version for very large arrays where the indices need to be in integer*8 format `set_zero_extra_diag <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/LinearAlgebra.irp.f#L637>`_ Undocumented `sort <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_270#L2>`_ Sort array x(isize). iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. `sorted_dnumber <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_238#L441>`_ Returns the number of sorted elements `sorted_i2number <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_238#L1137>`_ Returns the number of sorted elements `sorted_i8number <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_238#L905>`_ Returns the number of sorted elements `sorted_inumber <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_238#L673>`_ Returns the number of sorted elements `sorted_number <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/sort.irp.f_template_238#L209>`_ Returns the number of sorted elements `start_progress <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/progress.irp.f#L1>`_ Starts the progress bar `stop_progress <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/progress.irp.f#L19>`_ Stop the progress bar `svd <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/LinearAlgebra.irp.f#L1>`_ Compute A = U.D.Vt .br LDx : leftmost dimension of x .br Dimsneion of A is m x n .br `theta_angular_integration_lebedev <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/angular_integration.irp.f#L40>`_ Theta phi values together with the weights values for the angular integration : integral [dphi,dtheta] f(x,y,z) = 4 * pi * sum (1<i<n_points_integration_angular_lebedev) f(xi,yi,zi) Note that theta and phi are in DEGREES !! `transpose <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/transpose.irp.f#L2>`_ Transpose input matrix A into output matrix B `u_dot_u <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/util.irp.f#L304>`_ Compute <u|u> `u_dot_v <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/util.irp.f#L290>`_ Compute <u|v> `wall_time <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/util.irp.f#L259>`_ The equivalent of cpu_time, but for the wall time. `weights_angular_integration_lebedev <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/angular_integration.irp.f#L42>`_ Theta phi values together with the weights values for the angular integration : integral [dphi,dtheta] f(x,y,z) = 4 * pi * sum (1<i<n_points_integration_angular_lebedev) f(xi,yi,zi) Note that theta and phi are in DEGREES !! `write_git_log <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/util.irp.f#L234>`_ Write the last git commit in file iunit. `zmq_get_n_det_generators <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/zmq.irp.f_template_98#L37>`_ Get N_det_generators from the qp_run scheduler `zmq_get_n_det_selectors <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/zmq.irp.f_template_98#L130>`_ Get N_det_selectors from the qp_run scheduler `zmq_put_n_det_generators <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/zmq.irp.f_template_98#L3>`_ Put N_det_generators on the qp_run scheduler `zmq_put_n_det_selectors <http://github.com/LCPQ/quantum_package/tree/master/plugins/Selectors_Utils/zmq.irp.f_template_98#L96>`_ Put N_det_selectors on the qp_run scheduler