mirror of
https://github.com/LCPQ/quantum_package
synced 2024-11-08 23:23:57 +01:00
290 lines
5.9 KiB
Fortran
290 lines
5.9 KiB
Fortran
|
|
double precision function SABpartial(zA,zB,A,B,nA,nB,gamA,gamB)
|
|
implicit double precision(a-h,o-z)
|
|
dimension nA(3),nB(3)
|
|
dimension A(3),B(3)
|
|
gamtot=gamA+gamB
|
|
SABpartial=1.d0
|
|
|
|
l=3
|
|
u=gamA/gamtot*A(l)+gamB/gamtot*B(l)
|
|
arg=gamtot*u**2-gamA*A(l)**2-gamB*B(l)**2
|
|
alpha=dexp(arg)
|
|
&/gamtot**((1.d0+dfloat(nA(l))+dfloat(nB(l)))/2.d0)
|
|
wA=dsqrt(gamtot)*(u-A(l))
|
|
wB=dsqrt(gamtot)*(u-B(l))
|
|
boundA=dsqrt(gamtot)*(zA-u)
|
|
boundB=dsqrt(gamtot)*(zB-u)
|
|
|
|
accu=0.d0
|
|
do n=0,nA(l)
|
|
do m=0,nB(l)
|
|
integ=nA(l)+nB(l)-n-m
|
|
accu=accu
|
|
& +wA**n*wB**m*binom(nA(l),n)*binom(nB(l),m)
|
|
& *(rinteg(integ,boundB)-rinteg(integ,boundA))
|
|
enddo
|
|
enddo
|
|
SABpartial=SABpartial*accu*alpha
|
|
end
|
|
|
|
double precision function rintgauss(n)
|
|
implicit double precision(a-h,o-z)
|
|
rintgauss=dsqrt(dacos(-1.d0))
|
|
if(n.eq.0)return
|
|
if(n.eq.1)then
|
|
rintgauss=0.d0
|
|
return
|
|
endif
|
|
if(iand(n,1).eq.1)then
|
|
rintgauss=0.d0
|
|
return
|
|
endif
|
|
rintgauss=rintgauss/2.d0**(n/2)
|
|
rintgauss=rintgauss*ddfact2(n-1)
|
|
end
|
|
|
|
double precision function rinteg(n,u)
|
|
implicit double precision(a-h,o-z)
|
|
include 'constants.include.F'
|
|
! pi=dacos(-1.d0)
|
|
ichange=1
|
|
factor=1.d0
|
|
if(u.lt.0.d0)then
|
|
u=-u
|
|
factor=(-1.d0)**(n+1)
|
|
ichange=-1
|
|
endif
|
|
if(iand(n,1).eq.0)then
|
|
rinteg=0.d0
|
|
do l=0,n-2,2
|
|
prod=b_coef(l,u)
|
|
do k=l+2,n-2,2
|
|
prod=prod*a_coef(k)
|
|
enddo
|
|
rinteg=rinteg+prod
|
|
enddo
|
|
prod=dsqrt(pi)/2.d0*erf0(u)
|
|
do k=0,n-2,2
|
|
prod=prod*a_coef(k)
|
|
enddo
|
|
rinteg=rinteg+prod
|
|
endif
|
|
|
|
if(iand(n,1).eq.1)then
|
|
rinteg=0.d0
|
|
do l=1,n-2,2
|
|
prod=b_coef(l,u)
|
|
do k=l+2,n-2,2
|
|
prod=prod*a_coef(k)
|
|
enddo
|
|
rinteg=rinteg+prod
|
|
enddo
|
|
prod=0.5d0*(1.d0-dexp(-u**2))
|
|
do k=1,n-2,2
|
|
prod=prod*a_coef(k)
|
|
enddo
|
|
rinteg=rinteg+prod
|
|
endif
|
|
|
|
rinteg=rinteg*factor
|
|
|
|
if(ichange.eq.-1)u=-u
|
|
|
|
end
|
|
|
|
!<function type="double precision function" name="erf0">
|
|
! <arg name="x"
|
|
! doc ="" />
|
|
!
|
|
! <doc>
|
|
!
|
|
! </doc>
|
|
!
|
|
! <fortran>
|
|
double precision function erf0(x)
|
|
implicit double precision (a-h,o-z)
|
|
if(x.lt.0.d0)then
|
|
erf0=-gammp(0.5d0,x**2)
|
|
else
|
|
erf0=gammp(0.5d0,x**2)
|
|
endif
|
|
end
|
|
|
|
|
|
! </fortran>
|
|
!</function>
|
|
!<function type="double precision function" name="gammp">
|
|
! <arg name="a"
|
|
! doc ="" />
|
|
! <arg name="x"
|
|
! doc ="" />
|
|
!
|
|
! <doc>
|
|
!
|
|
! </doc>
|
|
!
|
|
! <calls>
|
|
! gcf
|
|
! gser
|
|
! </calls>
|
|
!
|
|
! <fortran>
|
|
double precision function gammp(a,x)
|
|
implicit double precision (a-h,o-z)
|
|
if(x.lt.0..or.a.le.0.)stop 'error in gammp'
|
|
if(x.lt.a+1.)then
|
|
call gser(gammp,a,x,gln)
|
|
else
|
|
call gcf(gammcf,a,x,gln)
|
|
gammp=1.-gammcf
|
|
endif
|
|
return
|
|
end
|
|
! </fortran>
|
|
!</function>
|
|
|
|
|
|
!<function type="subroutine" name="gser">
|
|
! <arg name="gamser"
|
|
! doc ="" />
|
|
! <arg name="a"
|
|
! doc ="" />
|
|
! <arg name="x"
|
|
! doc ="" />
|
|
! <arg name="gln"
|
|
! doc ="" />
|
|
!
|
|
! <doc>
|
|
!
|
|
! </doc>
|
|
!
|
|
! <calledBy>
|
|
! gammp
|
|
! </calledBy>
|
|
!
|
|
! <fortran>
|
|
subroutine gser(gamser,a,x,gln)
|
|
implicit double precision (a-h,o-z)
|
|
parameter (itmax=100,eps=3.e-7)
|
|
gln=gammln(a)
|
|
if(x.le.0.)then
|
|
if(x.lt.0.) stop 'error in gser'
|
|
gamser=0.
|
|
return
|
|
endif
|
|
ap=a
|
|
sum=1./a
|
|
del=sum
|
|
do 11 n=1,itmax
|
|
ap=ap+1.
|
|
del=del*x/ap
|
|
sum=sum+del
|
|
if(abs(del).lt.abs(sum)*eps)go to 1
|
|
11 continue
|
|
stop 'a too large, itmax too small'
|
|
1 gamser=sum*exp(-x+a*log(x)-gln)
|
|
return
|
|
end
|
|
! </fortran>
|
|
|
|
!</function>
|
|
!<function type="subroutine" name="gcf">
|
|
! <arg name="gammcf"
|
|
! doc ="" />
|
|
! <arg name="a"
|
|
! doc ="" />
|
|
! <arg name="x"
|
|
! doc ="" />
|
|
! <arg name="gln"
|
|
! doc ="" />
|
|
!
|
|
! <doc>
|
|
!
|
|
! </doc>
|
|
!
|
|
! <calledBy>
|
|
! gammp
|
|
! </calledBy>
|
|
!
|
|
! <fortran>
|
|
subroutine gcf(gammcf,a,x,gln)
|
|
implicit double precision (a-h,o-z)
|
|
parameter (itmax=100,eps=3.e-7)
|
|
gln=gammln(a)
|
|
gold=0.
|
|
a0=1.
|
|
a1=x
|
|
b0=0.
|
|
b1=1.
|
|
fac=1.
|
|
do 11 n=1,itmax
|
|
an=float(n)
|
|
ana=an-a
|
|
a0=(a1+a0*ana)*fac
|
|
b0=(b1+b0*ana)*fac
|
|
anf=an*fac
|
|
a1=x*a0+anf*a1
|
|
b1=x*b0+anf*b1
|
|
if(a1.ne.0.)then
|
|
fac=1./a1
|
|
g=b1*fac
|
|
if(abs((g-gold)/g).lt.eps)go to 1
|
|
gold=g
|
|
endif
|
|
11 continue
|
|
stop 'a too large, itmax too small'
|
|
1 gammcf=exp(-x+a*log(x)-gln)*g
|
|
return
|
|
end
|
|
|
|
! </fortran>
|
|
!</function>
|
|
double precision function ddfact2(n)
|
|
implicit double precision(a-h,o-z)
|
|
if(iand(n,1).eq.0)stop 'error in ddfact2'
|
|
ddfact2=1.d0
|
|
do i=1,n,2
|
|
ddfact2=ddfact2*dfloat(i)
|
|
enddo
|
|
end
|
|
|
|
double precision function a_coef(n)
|
|
implicit double precision(a-h,o-z)
|
|
a_coef=dfloat(n+1)/2.d0
|
|
end
|
|
|
|
double precision function b_coef(n,u)
|
|
implicit double precision(a-h,o-z)
|
|
b_coef=-0.5d0*u**(n+1)*dexp(-u**2)
|
|
end
|
|
|
|
!<function type="double precision function" name="gammln">
|
|
! <arg name="xx"
|
|
! doc ="" />
|
|
!
|
|
! <doc>
|
|
!
|
|
! </doc>
|
|
!
|
|
! <fortran>
|
|
double precision function gammln(xx)
|
|
implicit double precision (a-h,o-z)
|
|
real*8 cof(6),stp,half,one,fpf,x,tmp,ser
|
|
data cof,stp/76.18009173d0,-86.50532033d0,24.01409822d0,
|
|
* -1.231739516d0,.120858003d-2,-.536382d-5,2.50662827465d0/
|
|
data half,one,fpf/0.5d0,1.0d0,5.5d0/
|
|
x=xx-one
|
|
tmp=x+fpf
|
|
tmp=(x+half)*log(tmp)-tmp
|
|
ser=one
|
|
do 11 j=1,6
|
|
x=x+one
|
|
ser=ser+cof(j)/x
|
|
11 continue
|
|
gammln=tmp+log(stp*ser)
|
|
return
|
|
end
|
|
! </fortran>
|
|
!</function>
|