mirror of
https://github.com/LCPQ/quantum_package
synced 2025-01-07 03:43:20 +01:00
.. | ||
.gitignore | ||
ao_overlap.irp.f | ||
aos_value.irp.f | ||
aos.irp.f | ||
dimensions_integrals.irp.f | ||
EZFIO.cfg | ||
NEEDED_CHILDREN_MODULES | ||
README.rst | ||
spherical_to_cartesian.irp.f | ||
tree_dependency.png |
========== AOs Module ========== This module describes the atomic orbitals basis set. An atomic orbital :math:`\chi` centered on nucleus A is represented as: .. math:: \chi_i({\bf r}) = (x-X_A)^a (y-Y_A)^b (z-Z_A)^c \sum_k c_{ki} e^{-\gamma_{ki} |{\bf r} - {\bf R}_A|^2} The AO coefficients are normalized as: .. math:: {\tilde c}_{ki} = \frac{c_{ki}}{ \int \left( (x-X_A)^a (y-Y_A)^b (z-Z_A)^c e^{-\gamma_{ki} |{\bf r} - {\bf R}_A|^2} \right)^2} dr Warning: ``ao_coef`` contains the AO coefficients given in input. These do not include the normalization constant of the AO. The ``ao_coef_normalized`` includes this normalization factor. The AOs are also sorted by increasing exponent to accelerate the calculation of the two electron integrals. Assumptions =========== * The AO coefficients in the EZFIO files are not necessarily normalized and are normalized after reading Needed Modules ============== .. Do not edit this section It was auto-generated .. by the `update_README.py` script. .. image:: tree_dependency.png * `Nuclei <http://github.com/LCPQ/quantum_package/tree/master/src/Nuclei>`_ Needed Modules ============== .. Do not edit this section It was auto-generated .. by the `update_README.py` script. .. image:: tree_dependency.png * `Nuclei <http://github.com/LCPQ/quantum_package/tree/master/src/Nuclei>`_ Documentation ============= .. Do not edit this section It was auto-generated .. by the `update_README.py` script. `ao_coef <http://github.com/LCPQ/quantum_package/tree/master/src/AO_Basis/ezfio_interface.irp.f#L24>`_ AO Coefficients, read from input. Those should not be used directly, as the MOs are expressed on the basis of **normalized** AOs. `ao_coef_normalized <http://github.com/LCPQ/quantum_package/tree/master/src/AO_Basis/aos.irp.f#L22>`_ Coefficients including the AO normalization `ao_coef_normalized_ordered <http://github.com/LCPQ/quantum_package/tree/master/src/AO_Basis/aos.irp.f#L45>`_ Sorted primitives to accelerate 4 index MO transformation `ao_coef_normalized_ordered_transp <http://github.com/LCPQ/quantum_package/tree/master/src/AO_Basis/aos.irp.f#L71>`_ Transposed ao_coef_normalized_ordered `ao_expo <http://github.com/LCPQ/quantum_package/tree/master/src/AO_Basis/ezfio_interface.irp.f#L134>`_ expo for each primitive of each ao_basis `ao_expo_ordered <http://github.com/LCPQ/quantum_package/tree/master/src/AO_Basis/aos.irp.f#L46>`_ Sorted primitives to accelerate 4 index MO transformation `ao_expo_ordered_transp <http://github.com/LCPQ/quantum_package/tree/master/src/AO_Basis/aos.irp.f#L85>`_ Transposed ao_expo_ordered `ao_l <http://github.com/LCPQ/quantum_package/tree/master/src/AO_Basis/aos.irp.f#L99>`_ ao_l = l value of the AO: a+b+c in x^a y^b z^c `ao_l_char <http://github.com/LCPQ/quantum_package/tree/master/src/AO_Basis/aos.irp.f#L100>`_ ao_l = l value of the AO: a+b+c in x^a y^b z^c `ao_l_char_space <http://github.com/LCPQ/quantum_package/tree/master/src/AO_Basis/aos.irp.f#L216>`_ Undocumented `ao_md5 <http://github.com/LCPQ/quantum_package/tree/master/src/AO_Basis/ezfio_interface.irp.f#L6>`_ MD5 key characteristic of the AO basis `ao_nucl <http://github.com/LCPQ/quantum_package/tree/master/src/AO_Basis/ezfio_interface.irp.f#L112>`_ Index of the nuclei on which the ao is centered `ao_num <http://github.com/LCPQ/quantum_package/tree/master/src/AO_Basis/ezfio_interface.irp.f#L68>`_ number of ao `ao_num_align <http://github.com/LCPQ/quantum_package/tree/master/src/AO_Basis/aos.irp.f#L1>`_ Number of atomic orbitals align `ao_overlap <http://github.com/LCPQ/quantum_package/tree/master/src/AO_Basis/ao_overlap.irp.f#L1>`_ Overlap between atomic basis functions: :math:`\int \chi_i(r) \chi_j(r) dr)` `ao_overlap_abs <http://github.com/LCPQ/quantum_package/tree/master/src/AO_Basis/ao_overlap.irp.f#L66>`_ Overlap between absolute value of atomic basis functions: :math:`\int |\chi_i(r)| |\chi_j(r)| dr)` `ao_overlap_x <http://github.com/LCPQ/quantum_package/tree/master/src/AO_Basis/ao_overlap.irp.f#L2>`_ Overlap between atomic basis functions: :math:`\int \chi_i(r) \chi_j(r) dr)` `ao_overlap_y <http://github.com/LCPQ/quantum_package/tree/master/src/AO_Basis/ao_overlap.irp.f#L3>`_ Overlap between atomic basis functions: :math:`\int \chi_i(r) \chi_j(r) dr)` `ao_overlap_z <http://github.com/LCPQ/quantum_package/tree/master/src/AO_Basis/ao_overlap.irp.f#L4>`_ Overlap between atomic basis functions: :math:`\int \chi_i(r) \chi_j(r) dr)` `ao_power <http://github.com/LCPQ/quantum_package/tree/master/src/AO_Basis/ezfio_interface.irp.f#L46>`_ power for each dimension for each ao_basis `ao_prim_num <http://github.com/LCPQ/quantum_package/tree/master/src/AO_Basis/ezfio_interface.irp.f#L90>`_ Number of primitives per atomic orbital `ao_prim_num_max <http://github.com/LCPQ/quantum_package/tree/master/src/AO_Basis/aos.irp.f#L12>`_ Undocumented `ao_prim_num_max_align <http://github.com/LCPQ/quantum_package/tree/master/src/AO_Basis/aos.irp.f#L112>`_ Number of primitives per atomic orbital aligned `l_to_charater <http://github.com/LCPQ/quantum_package/tree/master/src/AO_Basis/aos.irp.f#L123>`_ character corresponding to the "L" value of an AO orbital `n_aos_max <http://github.com/LCPQ/quantum_package/tree/master/src/AO_Basis/aos.irp.f#L136>`_ Number of AOs per atom `n_pt_max_i_x <http://github.com/LCPQ/quantum_package/tree/master/src/AO_Basis/dimensions_integrals.irp.f#L2>`_ Undocumented `n_pt_max_integrals <http://github.com/LCPQ/quantum_package/tree/master/src/AO_Basis/dimensions_integrals.irp.f#L1>`_ Undocumented `nucl_aos <http://github.com/LCPQ/quantum_package/tree/master/src/AO_Basis/aos.irp.f#L149>`_ List of AOs attached on each atom `nucl_list_shell_aos <http://github.com/LCPQ/quantum_package/tree/master/src/AO_Basis/aos.irp.f#L167>`_ Index of the shell type Aos and of the corresponding Aos Per convention, for P,D,F and G AOs, we take the index of the AO with the the corresponding power in the "X" axis `nucl_n_aos <http://github.com/LCPQ/quantum_package/tree/master/src/AO_Basis/aos.irp.f#L135>`_ Number of AOs per atom `nucl_num_shell_aos <http://github.com/LCPQ/quantum_package/tree/master/src/AO_Basis/aos.irp.f#L168>`_ Index of the shell type Aos and of the corresponding Aos Per convention, for P,D,F and G AOs, we take the index of the AO with the the corresponding power in the "X" axis