10
0
mirror of https://github.com/LCPQ/quantum_package synced 2025-01-11 05:28:29 +01:00
quantum_package/plugins/MRCC/mrcc_utils.irp.f
Thomas Applencourt 6a91e63cf3 Move into plugins
2015-06-17 18:23:56 +02:00

175 lines
4.6 KiB
Fortran

BEGIN_PROVIDER [ double precision, lambda_mrcc, (N_states,psi_det_size) ]
implicit none
BEGIN_DOC
! cm/<Psi_0|H|D_m>
END_DOC
integer :: i,k
double precision :: ihpsi(N_states)
do i=1,N_det_non_cas
call i_h_psi(psi_non_cas(1,1,i), psi_cas, psi_cas_coef, N_int, N_det_cas, &
size(psi_cas_coef,1), n_states, ihpsi)
double precision :: hij
do k=1,N_states
if (dabs(ihpsi(k)) > 1.d-5) then
lambda_mrcc(k,i) = psi_non_cas_coef(i,k)/ihpsi(k)
lambda_mrcc(k,i) = min( lambda_mrcc (k,i),0.d0 )
else
lambda_mrcc(k,i) = 0.d0
endif
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ character*(32), dressing_type ]
implicit none
BEGIN_DOC
! [ Simple | MRCC ]
END_DOC
dressing_type = "MRCC"
END_PROVIDER
BEGIN_PROVIDER [ double precision, delta_ij_non_cas, (N_det_non_cas, N_det_non_cas,N_states) ]
implicit none
BEGIN_DOC
! Dressing matrix in SD basis
END_DOC
delta_ij_non_cas = 0.d0
call H_apply_mrcc_simple(delta_ij_non_cas,N_det_non_cas)
END_PROVIDER
BEGIN_PROVIDER [ double precision, delta_ij, (N_det,N_det,N_states) ]
implicit none
BEGIN_DOC
! Dressing matrix in N_det basis
END_DOC
integer :: i,j,m
delta_ij = 0.d0
if (dressing_type == "MRCC") then
call H_apply_mrcc(delta_ij,N_det)
else if (dressing_type == "Simple") then
do m=1,N_states
do j=1,N_det_non_cas
do i=1,N_det_non_cas
delta_ij(idx_non_cas(i),idx_non_cas(j),m) = delta_ij_non_cas(i,j,m)
enddo
enddo
enddo
endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, h_matrix_dressed, (N_det,N_det) ]
implicit none
BEGIN_DOC
! Dressed H with Delta_ij
END_DOC
integer :: i, j
do j=1,N_det
do i=1,N_det
h_matrix_dressed(i,j) = h_matrix_all_dets(i,j) + delta_ij(i,j,1)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, CI_electronic_energy_dressed, (N_states_diag) ]
&BEGIN_PROVIDER [ double precision, CI_eigenvectors_dressed, (N_det,N_states_diag) ]
&BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2_dressed, (N_states_diag) ]
implicit none
BEGIN_DOC
! Eigenvectors/values of the CI matrix
END_DOC
integer :: i,j
do j=1,N_states_diag
do i=1,N_det
CI_eigenvectors_dressed(i,j) = psi_coef(i,j)
enddo
enddo
if (diag_algorithm == "Davidson") then
integer :: istate
istate = 1
call davidson_diag_mrcc(psi_det,CI_eigenvectors_dressed,CI_electronic_energy_dressed, &
size(CI_eigenvectors_dressed,1),N_det,N_states_diag,N_int,output_determinants,istate)
else if (diag_algorithm == "Lapack") then
double precision, allocatable :: eigenvectors(:,:), eigenvalues(:)
allocate (eigenvectors(size(H_matrix_dressed,1),N_det))
allocate (eigenvalues(N_det))
call lapack_diag(eigenvalues,eigenvectors, &
H_matrix_dressed,size(H_matrix_dressed,1),N_det)
CI_electronic_energy_dressed(:) = 0.d0
do i=1,N_det
CI_eigenvectors_dressed(i,1) = eigenvectors(i,1)
enddo
integer :: i_state
double precision :: s2
i_state = 0
if (s2_eig) then
do j=1,N_det
call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2)
if(dabs(s2-expected_s2).le.0.3d0)then
i_state += 1
do i=1,N_det
CI_eigenvectors_dressed(i,i_state) = eigenvectors(i,j)
enddo
CI_electronic_energy_dressed(i_state) = eigenvalues(j)
CI_eigenvectors_s2_dressed(i_state) = s2
endif
if (i_state.ge.N_states_diag) then
exit
endif
enddo
else
do j=1,N_states_diag
call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2)
i_state += 1
do i=1,N_det
CI_eigenvectors_dressed(i,i_state) = eigenvectors(i,j)
enddo
CI_electronic_energy_dressed(i_state) = eigenvalues(j)
CI_eigenvectors_s2_dressed(i_state) = s2
enddo
endif
deallocate(eigenvectors,eigenvalues)
endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, CI_energy_dressed, (N_states_diag) ]
implicit none
BEGIN_DOC
! N_states lowest eigenvalues of the dressed CI matrix
END_DOC
integer :: j
character*(8) :: st
call write_time(output_determinants)
do j=1,N_states_diag
CI_energy_dressed(j) = CI_electronic_energy_dressed(j) + nuclear_repulsion
enddo
END_PROVIDER
subroutine diagonalize_CI_dressed
implicit none
BEGIN_DOC
! Replace the coefficients of the CI states by the coefficients of the
! eigenstates of the CI matrix
END_DOC
integer :: i,j
do j=1,N_states_diag
do i=1,N_det
psi_coef(i,j) = CI_eigenvectors_dressed(i,j)
enddo
enddo
SOFT_TOUCH psi_coef
end