mirror of
https://github.com/LCPQ/quantum_package
synced 2024-11-09 07:33:53 +01:00
192 lines
6.7 KiB
Fortran
192 lines
6.7 KiB
Fortran
BEGIN_PROVIDER [ double precision, CI_energy_dressed, (N_states_diag) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! N_states lowest eigenvalues of the CI matrix
|
|
END_DOC
|
|
|
|
integer :: j
|
|
character*(8) :: st
|
|
call write_time(6)
|
|
do j=1,min(N_det,N_states_diag)
|
|
CI_energy_dressed(j) = CI_electronic_energy_dressed(j) + nuclear_repulsion
|
|
enddo
|
|
do j=1,min(N_det,N_states)
|
|
write(st,'(I4)') j
|
|
call write_double(6,CI_energy_dressed(j),'Energy of state '//trim(st))
|
|
call write_double(6,CI_eigenvectors_s2_dressed(j),'S^2 of state '//trim(st))
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ double precision, CI_electronic_energy_dressed, (N_states_diag) ]
|
|
&BEGIN_PROVIDER [ double precision, CI_eigenvectors_dressed, (N_det,N_states_diag) ]
|
|
&BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2_dressed, (N_states_diag) ]
|
|
BEGIN_DOC
|
|
! Eigenvectors/values of the CI matrix
|
|
END_DOC
|
|
implicit none
|
|
double precision :: ovrlp,u_dot_v
|
|
integer :: i_good_state
|
|
integer, allocatable :: index_good_state_array(:)
|
|
logical, allocatable :: good_state_array(:)
|
|
double precision, allocatable :: s2_values_tmp(:)
|
|
integer :: i_other_state
|
|
double precision, allocatable :: eigenvectors(:,:), eigenvectors_s2(:,:), eigenvalues(:)
|
|
integer :: i_state
|
|
double precision :: e_0
|
|
integer :: i,j,k,mrcc_state
|
|
double precision, allocatable :: s2_eigvalues(:)
|
|
double precision, allocatable :: e_array(:)
|
|
integer, allocatable :: iorder(:)
|
|
|
|
PROVIDE threshold_davidson nthreads_davidson
|
|
! Guess values for the "N_states" states of the CI_eigenvectors_dressed
|
|
do j=1,min(N_states,N_det)
|
|
do i=1,N_det
|
|
CI_eigenvectors_dressed(i,j) = psi_coef(i,j)
|
|
enddo
|
|
enddo
|
|
|
|
do j=min(N_states,N_det)+1,N_states_diag
|
|
do i=1,N_det
|
|
CI_eigenvectors_dressed(i,j) = 0.d0
|
|
enddo
|
|
enddo
|
|
|
|
if (diag_algorithm == "Davidson") then
|
|
|
|
do j=1,min(N_states,N_det)
|
|
do i=1,N_det
|
|
CI_eigenvectors_dressed(i,j) = psi_coef(i,j)
|
|
enddo
|
|
enddo
|
|
call davidson_diag_HS2(psi_det,CI_eigenvectors_dressed, CI_eigenvectors_s2_dressed,&
|
|
size(CI_eigenvectors_dressed,1), CI_electronic_energy_dressed,&
|
|
N_det,min(N_det,N_states),min(N_det,N_states_diag),N_int,1)
|
|
! call u_0_S2_u_0(CI_eigenvectors_s2_dressed,CI_eigenvectors_dressed,N_det,psi_det,N_int,&
|
|
! N_states_diag,size(CI_eigenvectors_dressed,1))
|
|
|
|
|
|
else if (diag_algorithm == "Lapack") then
|
|
|
|
allocate (eigenvectors(size(H_matrix_dressed,1),N_det))
|
|
allocate (eigenvalues(N_det))
|
|
|
|
call lapack_diag(eigenvalues,eigenvectors, &
|
|
H_matrix_dressed,size(H_matrix_dressed,1),N_det)
|
|
CI_electronic_energy_dressed(:) = 0.d0
|
|
if (s2_eig) then
|
|
i_state = 0
|
|
allocate (s2_eigvalues(N_det))
|
|
allocate(index_good_state_array(N_det),good_state_array(N_det))
|
|
good_state_array = .False.
|
|
|
|
call u_0_S2_u_0(s2_eigvalues,eigenvectors,N_det,psi_det,N_int,&
|
|
N_det,size(eigenvectors,1))
|
|
do j=1,N_det
|
|
! Select at least n_states states with S^2 values closed to "expected_s2"
|
|
if(dabs(s2_eigvalues(j)-expected_s2).le.0.5d0)then
|
|
i_state +=1
|
|
index_good_state_array(i_state) = j
|
|
good_state_array(j) = .True.
|
|
endif
|
|
if(i_state.eq.N_states) then
|
|
exit
|
|
endif
|
|
enddo
|
|
if(i_state .ne.0)then
|
|
! Fill the first "i_state" states that have a correct S^2 value
|
|
do j = 1, i_state
|
|
do i=1,N_det
|
|
CI_eigenvectors_dressed(i,j) = eigenvectors(i,index_good_state_array(j))
|
|
enddo
|
|
CI_electronic_energy_dressed(j) = eigenvalues(index_good_state_array(j))
|
|
CI_eigenvectors_s2_dressed(j) = s2_eigvalues(index_good_state_array(j))
|
|
enddo
|
|
i_other_state = 0
|
|
do j = 1, N_det
|
|
if(good_state_array(j))cycle
|
|
i_other_state +=1
|
|
if(i_state+i_other_state.gt.n_states_diag)then
|
|
exit
|
|
endif
|
|
do i=1,N_det
|
|
CI_eigenvectors_dressed(i,i_state+i_other_state) = eigenvectors(i,j)
|
|
enddo
|
|
CI_electronic_energy_dressed(i_state+i_other_state) = eigenvalues(j)
|
|
CI_eigenvectors_s2_dressed(i_state+i_other_state) = s2_eigvalues(i_state+i_other_state)
|
|
enddo
|
|
else
|
|
print*,''
|
|
print*,'!!!!!!!! WARNING !!!!!!!!!'
|
|
print*,' Within the ',N_det,'determinants selected'
|
|
print*,' and the ',N_states_diag,'states requested'
|
|
print*,' We did not find any state with S^2 values close to ',expected_s2
|
|
print*,' We will then set the first N_states eigenvectors of the H matrix'
|
|
print*,' as the CI_eigenvectors_dressed'
|
|
print*,' You should consider more states and maybe ask for s2_eig to be .True. or just enlarge the CI space'
|
|
print*,''
|
|
do j=1,min(N_states_diag,N_det)
|
|
do i=1,N_det
|
|
CI_eigenvectors_dressed(i,j) = eigenvectors(i,j)
|
|
enddo
|
|
CI_electronic_energy_dressed(j) = eigenvalues(j)
|
|
CI_eigenvectors_s2_dressed(j) = s2_eigvalues(j)
|
|
enddo
|
|
endif
|
|
deallocate(index_good_state_array,good_state_array)
|
|
deallocate(s2_eigvalues)
|
|
else
|
|
call u_0_S2_u_0(CI_eigenvectors_s2_dressed,eigenvectors,N_det,psi_det,N_int,&
|
|
min(N_det,N_states_diag),size(eigenvectors,1))
|
|
! Select the "N_states_diag" states of lowest energy
|
|
do j=1,min(N_det,N_states_diag)
|
|
do i=1,N_det
|
|
CI_eigenvectors_dressed(i,j) = eigenvectors(i,j)
|
|
enddo
|
|
CI_electronic_energy_dressed(j) = eigenvalues(j)
|
|
enddo
|
|
endif
|
|
deallocate(eigenvectors,eigenvalues)
|
|
endif
|
|
|
|
END_PROVIDER
|
|
|
|
subroutine diagonalize_CI_dressed
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Replace the coefficients of the CI states by the coefficients of the
|
|
! eigenstates of the CI matrix
|
|
END_DOC
|
|
integer :: i,j
|
|
do j=1,N_states
|
|
do i=1,N_det
|
|
psi_coef(i,j) = CI_eigenvectors_dressed(i,j)
|
|
enddo
|
|
enddo
|
|
SOFT_TOUCH psi_coef
|
|
end
|
|
|
|
|
|
|
|
BEGIN_PROVIDER [ double precision, h_matrix_dressed, (N_det,N_det) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Dressed H with Delta_ij
|
|
END_DOC
|
|
integer :: i, j, k
|
|
|
|
h_matrix_dressed(1:N_det,1:N_det) = h_matrix_all_dets(1:N_det,1:N_det)
|
|
do k=1,N_states
|
|
do j=1,N_det
|
|
do i=1,N_det
|
|
h_matrix_dressed(i,j) = h_matrix_dressed(i,j) + &
|
|
0.5d0 * (dressing_column_h(i,k) * psi_coef(j,k) + &
|
|
dressing_column_h(j,k) * psi_coef(i,k))
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|