10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-11-14 01:53:55 +01:00
quantum_package/plugins/QmcChem/pot_ao_pseudo_ints.irp.f
Thomas Applencourt 6a91e63cf3 Move into plugins
2015-06-17 18:23:56 +02:00

342 lines
10 KiB
Fortran

BEGIN_PROVIDER [ double precision, aux_pseudo_integral, (aux_basis_num_sqrt,aux_basis_num_sqrt)]
implicit none
BEGIN_DOC
! Pseudo-potential
END_DOC
if (do_pseudo) then
! aux_pseudo_integral = aux_pseudo_integral_local + aux_pseudo_integral_non_local
! aux_pseudo_integral = aux_pseudo_integral_local
aux_pseudo_integral = aux_pseudo_integral_non_local
else
aux_pseudo_integral = 0.d0
endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, aux_pseudo_integral_local, (aux_basis_num_sqrt,aux_basis_num_sqrt)]
implicit none
BEGIN_DOC
! Local pseudo-potential
END_DOC
double precision :: alpha, beta, gama, delta
integer :: num_A,num_B
double precision :: A_center(3),B_center(3),C_center(3)
integer :: power_A(3),power_B(3)
integer :: i,j,k,l,n_pt_in,m
double precision :: Vloc, Vpseudo
double precision :: cpu_1, cpu_2, wall_1, wall_2, wall_0
integer :: thread_num
aux_pseudo_integral_local = 0.d0
!! Dump array
integer, allocatable :: n_k_dump(:)
double precision, allocatable :: v_k_dump(:), dz_k_dump(:)
allocate(n_k_dump(1:pseudo_klocmax), v_k_dump(1:pseudo_klocmax), dz_k_dump(1:pseudo_klocmax))
! _
! / _. | _ |
! \_ (_| | (_ |_| |
!
print*, 'Providing the nuclear electron pseudo integrals '
call wall_time(wall_1)
call cpu_time(cpu_1)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,l,m,alpha,beta,A_center,B_center,C_center,power_A,power_B, &
!$OMP num_A,num_B,Z,c,n_pt_in, &
!$OMP v_k_dump,n_k_dump, dz_k_dump, &
!$OMP wall_0,wall_2,thread_num) &
!$OMP SHARED (aux_basis_num_sqrt,aux_basis_prim_num,aux_basis_expo_transp,aux_basis_power,aux_basis_nucl,nucl_coord,aux_basis_coef_transp, &
!$OMP aux_pseudo_integral_local,nucl_num,nucl_charge, &
!$OMP pseudo_klocmax,pseudo_lmax,pseudo_kmax,pseudo_v_k,pseudo_n_k, pseudo_dz_k, &
!$OMP wall_1)
!$OMP DO SCHEDULE (guided)
do j = 1, aux_basis_num_sqrt
num_A = aux_basis_nucl(j)
power_A(1:3)= aux_basis_power(j,1:3)
A_center(1:3) = nucl_coord(num_A,1:3)
do i = 1, aux_basis_num_sqrt
num_B = aux_basis_nucl(i)
power_B(1:3)= aux_basis_power(i,1:3)
B_center(1:3) = nucl_coord(num_B,1:3)
do l=1,aux_basis_prim_num(j)
alpha = aux_basis_expo_transp(l,j)
do m=1,aux_basis_prim_num(i)
beta = aux_basis_expo_transp(m,i)
double precision :: c
c = 0.d0
do k = 1, nucl_num
double precision :: Z
Z = nucl_charge(k)
C_center(1:3) = nucl_coord(k,1:3)
v_k_dump = pseudo_v_k(k,1:pseudo_klocmax)
n_k_dump = pseudo_n_k(k,1:pseudo_klocmax)
dz_k_dump = pseudo_dz_k(k,1:pseudo_klocmax)
c = c + Vloc(pseudo_klocmax, v_k_dump,n_k_dump, dz_k_dump, &
A_center,power_A,alpha,B_center,power_B,beta,C_center)
enddo
aux_pseudo_integral_local(i,j) = aux_pseudo_integral_local(i,j) + &
aux_basis_coef_transp(l,j)*aux_basis_coef_transp(m,i)*c
enddo
enddo
enddo
call wall_time(wall_2)
if (thread_num == 0) then
if (wall_2 - wall_0 > 1.d0) then
wall_0 = wall_2
print*, 100.*float(j)/float(aux_basis_num_sqrt), '% in ', &
wall_2-wall_1, 's'
endif
endif
enddo
!$OMP END DO
!$OMP END PARALLEL
deallocate(n_k_dump,v_k_dump, dz_k_dump)
END_PROVIDER
BEGIN_PROVIDER [ double precision, aux_pseudo_integral_non_local, (aux_basis_num_sqrt,aux_basis_num_sqrt)]
implicit none
BEGIN_DOC
! Local pseudo-potential
END_DOC
double precision :: alpha, beta, gama, delta
integer :: num_A,num_B
double precision :: A_center(3),B_center(3),C_center(3)
integer :: power_A(3),power_B(3)
integer :: i,j,k,l,n_pt_in,m
double precision :: Vloc, Vpseudo
double precision :: cpu_1, cpu_2, wall_1, wall_2, wall_0
integer :: thread_num
aux_pseudo_integral_non_local = 0.d0
!! Dump array
integer, allocatable :: n_kl_dump(:,:)
double precision, allocatable :: v_kl_dump(:,:), dz_kl_dump(:,:)
allocate(n_kl_dump(pseudo_kmax,0:pseudo_lmax), v_kl_dump(pseudo_kmax,0:pseudo_lmax), dz_kl_dump(pseudo_kmax,0:pseudo_lmax))
! _
! / _. | _ |
! \_ (_| | (_ |_| |
!
print*, 'Providing the nuclear electron pseudo integrals '
call wall_time(wall_1)
call cpu_time(cpu_1)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,l,m,alpha,beta,A_center,B_center,C_center,power_A,power_B, &
!$OMP num_A,num_B,Z,c,n_pt_in, &
!$OMP n_kl_dump, v_kl_dump, dz_kl_dump, &
!$OMP wall_0,wall_2,thread_num) &
!$OMP SHARED (aux_basis_num_sqrt,aux_basis_prim_num,aux_basis_expo_transp,aux_basis_power,aux_basis_nucl,nucl_coord,aux_basis_coef_transp, &
!$OMP aux_pseudo_integral_non_local,nucl_num,nucl_charge, &
!$OMP pseudo_klocmax,pseudo_lmax,pseudo_kmax,pseudo_n_kl, pseudo_v_kl, pseudo_dz_kl, &
!$OMP wall_1)
!$OMP DO SCHEDULE (guided)
do j = 1, aux_basis_num_sqrt
num_A = aux_basis_nucl(j)
power_A(1:3)= aux_basis_power(j,1:3)
A_center(1:3) = nucl_coord(num_A,1:3)
do i = 1, aux_basis_num_sqrt
num_B = aux_basis_nucl(i)
power_B(1:3)= aux_basis_power(i,1:3)
B_center(1:3) = nucl_coord(num_B,1:3)
do l=1,aux_basis_prim_num(j)
alpha = aux_basis_expo_transp(l,j)
do m=1,aux_basis_prim_num(i)
beta = aux_basis_expo_transp(m,i)
double precision :: c
c = 0.d0
do k = 1, nucl_num
double precision :: Z
Z = nucl_charge(k)
C_center(1:3) = nucl_coord(k,1:3)
n_kl_dump = pseudo_n_kl(k,1:pseudo_kmax,0:pseudo_lmax)
v_kl_dump = pseudo_v_kl(k,1:pseudo_kmax,0:pseudo_lmax)
dz_kl_dump = pseudo_dz_kl(k,1:pseudo_kmax,0:pseudo_lmax)
c = c + Vpseudo(pseudo_lmax,pseudo_kmax,v_kl_dump,n_kl_dump,dz_kl_dump,A_center,power_A,alpha,B_center,power_B,beta,C_center)
enddo
aux_pseudo_integral_non_local(i,j) = aux_pseudo_integral_non_local(i,j) + &
aux_basis_coef_transp(l,j)*aux_basis_coef_transp(m,i)*c
enddo
enddo
enddo
call wall_time(wall_2)
if (thread_num == 0) then
if (wall_2 - wall_0 > 1.d0) then
wall_0 = wall_2
print*, 100.*float(j)/float(aux_basis_num_sqrt), '% in ', &
wall_2-wall_1, 's'
endif
endif
enddo
!$OMP END DO
!$OMP END PARALLEL
deallocate(n_kl_dump,v_kl_dump, dz_kl_dump)
END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_pseudo_grid, (ao_num,-pseudo_lmax:pseudo_lmax,0:pseudo_lmax,nucl_num,pseudo_grid_size) ]
implicit none
BEGIN_DOC
! Grid points for f(|r-r_A|) = \int Y_{lm}^{C} (|r-r_C|, \Omega_C) \chi_i^{A} (r-r_A) d\Omega_C
!
! <img src="http://latex.codecogs.com/gif.latex?f(|r-r_A|)&space;=&space;\int&space;Y_{lm}^{C}&space;(|r-r_C|,&space;\Omega_C)&space;\chi_i^{A}&space;(r-r_A)&space;d\Omega_C"
! title="f(|r-r_A|) = \int Y_{lm}^{C} (|r-r_C|, \Omega_C) \chi_i^{A} (r-r_A) d\Omega_C" />
END_DOC
! l,m : Y(l,m) parameters
! c(3) : pseudopotential center
! a(3) : Atomic Orbital center
! n_a(3) : Powers of x,y,z in the Atomic Orbital
! g_a : Atomic Orbital exponent
! r : Distance between the Atomic Orbital center and the considered point
double precision, external :: ylm_orb
integer :: n_a(3)
double precision :: a(3), c(3), g_a
integer :: i,j,k,l,m,n,p
double precision :: r(pseudo_grid_size), dr, Ulc
double precision :: y
dr = pseudo_grid_rmax/dble(pseudo_grid_size)
r(1) = 0.d0
do j=2,pseudo_grid_size
r(j) = r(j-1) + dr
enddo
ao_pseudo_grid = 0.d0
do j=1,pseudo_grid_size
do k=1,nucl_num
c(1:3) = nucl_coord(k,1:3)
do l=0,pseudo_lmax
do i=1,ao_num
a(1:3) = nucl_coord(ao_nucl(i),1:3)
n_a(1:3) = ao_power(i,1:3)
do p=1,ao_prim_num(i)
g_a = ao_expo_ordered_transp(p,i)
do m=-l,l
y = ylm_orb(l,m,c,a,n_a,g_a,r(j))
ao_pseudo_grid(i,m,l,k,j) = ao_pseudo_grid(i,m,l,k,j) + &
ao_coef_normalized_ordered_transp(p,i)*y
enddo
enddo
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, mo_pseudo_grid, (ao_num,-pseudo_lmax:pseudo_lmax,0:pseudo_lmax,nucl_num,pseudo_grid_size) ]
implicit none
BEGIN_DOC
! Grid points for f(|r-r_A|) = \int Y_{lm}^{C} (|r-r_C|, \Omega_C) \phi_i^{A} (r-r_A) d\Omega_C
!
! <img src="http://latex.codecogs.com/gif.latex?f(|r-r_A|)&space;=&space;\int&space;Y_{lm}^{C}&space;(|r-r_C|,&space;\Omega_C)&space;\chi_i^{A}&space;(r-r_A)&space;d\Omega_C"
! title="f(|r-r_A|) = \int Y_{lm}^{C} (|r-r_C|, \Omega_C) \chi_i^{A} (r-r_A) d\Omega_C" />
END_DOC
! l,m : Y(l,m) parameters
! c(3) : pseudopotential center
! a(3) : Atomic Orbital center
! n_a(3) : Powers of x,y,z in the Atomic Orbital
! g_a : Atomic Orbital exponent
! r : Distance between the Atomic Orbital center and the considered point
double precision, external :: ylm_orb
integer :: n_a(3)
double precision :: a(3), c(3), g_a
integer :: i,j,k,l,m,n,p
double precision :: r(pseudo_grid_size), dr, Ulc
double precision :: y
dr = pseudo_grid_rmax/dble(pseudo_grid_size)
r(1) = 0.d0
do j=2,pseudo_grid_size
r(j) = r(j-1) + dr
enddo
mo_pseudo_grid = 0.d0
do n=1,pseudo_grid_size
do k=1,nucl_num
do l=0,pseudo_lmax
do m=-l,l
do j=1,mo_tot_num
do i=1,ao_num
mo_pseudo_grid(j,m,l,k,n) = mo_pseudo_grid(j,m,l,k,n) + &
ao_pseudo_grid(i,m,l,k,n) * mo_coef(i,j)
enddo
enddo
enddo
enddo
enddo
enddo
END_PROVIDER
double precision function test_pseudo_grid_ao(i,j)
implicit none
integer, intent(in) :: i,j
integer :: k,l,m,n
double precision :: r, dr,u
dr = pseudo_grid_rmax/dble(pseudo_grid_size)
test_pseudo_grid_ao = 0.d0
r = 0.d0
do k=1,pseudo_grid_size
do n=1,nucl_num
do l = 0,pseudo_lmax
u = pseudo_v_kl(n,l,1) * exp(-pseudo_dz_kl(n,l,1)*r*r)* r*r*dr
do m=-l,l
test_pseudo_grid_ao += ao_pseudo_grid(i,m,l,n,k) * ao_pseudo_grid(j,m,l,n,k) * u
enddo
enddo
enddo
r = r+dr
enddo
end