10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-06-18 19:25:28 +02:00
quantum_package/plugins/Full_CI_ZMQ/selection.irp.f

1566 lines
50 KiB
Fortran

BEGIN_PROVIDER [ double precision, integral8, (mo_tot_num, mo_tot_num, mo_tot_num, mo_tot_num) ]
integral8 = 0d0
integer :: h1, h2
do h1=1, mo_tot_num
do h2=1, mo_tot_num
call get_mo_bielec_integrals_ij(h1, h2 ,mo_tot_num,integral8(1,1,h1,h2),mo_integrals_map)
end do
end do
END_PROVIDER
subroutine selection_slaved(thread,iproc,energy)
use f77_zmq
use selection_types
implicit none
double precision, intent(in) :: energy(N_states_diag)
integer, intent(in) :: thread, iproc
integer :: rc, i
integer :: worker_id, task_id(1), ctask, ltask
character*(512) :: task
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
integer(ZMQ_PTR), external :: new_zmq_push_socket
integer(ZMQ_PTR) :: zmq_socket_push
type(selection_buffer) :: buf, buf2
logical :: done
double precision :: pt2(N_states)
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
zmq_socket_push = new_zmq_push_socket(thread)
call connect_to_taskserver(zmq_to_qp_run_socket,worker_id,thread)
if(worker_id == -1) then
print *, "WORKER -1"
!call disconnect_from_taskserver(zmq_to_qp_run_socket,zmq_socket_push,worker_id)
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
call end_zmq_push_socket(zmq_socket_push,thread)
return
end if
buf%N = 0
ctask = 1
pt2 = 0d0
do
call get_task_from_taskserver(zmq_to_qp_run_socket,worker_id, task_id(ctask), task)
done = task_id(ctask) == 0
if (done) then
ctask = ctask - 1
else
integer :: i_generator, i_generator_start, i_generator_max, step, N
read (task,*) i_generator_start, i_generator_max, step, N
if(buf%N == 0) then
! Only first time
call create_selection_buffer(N, N*2, buf)
call create_selection_buffer(N, N*3, buf2)
else
if(N /= buf%N) stop "N changed... wtf man??"
end if
!print *, "psi_selectors_coef ", psi_selectors_coef(N_det_selectors-5:N_det_selectors, 1)
!call debug_det(psi_selectors(1,1,N_det_selectors), N_int)
do i_generator=i_generator_start,i_generator_max,step
call select_connected(i_generator,energy,pt2,buf)
enddo
endif
if(done .or. ctask == size(task_id)) then
if(buf%N == 0 .and. ctask > 0) stop "uninitialized selection_buffer"
do i=1, ctask
call task_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id(i))
end do
if(ctask > 0) then
call push_selection_results(zmq_socket_push, pt2, buf, task_id(1), ctask)
do i=1,buf%cur
call add_to_selection_buffer(buf2, buf%det(1,1,i), buf%val(i))
enddo
call sort_selection_buffer(buf2)
buf%mini = buf2%mini
pt2 = 0d0
buf%cur = 0
end if
ctask = 0
end if
if(done) exit
ctask = ctask + 1
end do
call disconnect_from_taskserver(zmq_to_qp_run_socket,zmq_socket_push,worker_id)
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
call end_zmq_push_socket(zmq_socket_push,thread)
end subroutine
subroutine push_selection_results(zmq_socket_push, pt2, b, task_id, ntask)
use f77_zmq
use selection_types
implicit none
integer(ZMQ_PTR), intent(in) :: zmq_socket_push
double precision, intent(in) :: pt2(N_states)
type(selection_buffer), intent(inout) :: b
integer, intent(in) :: ntask, task_id(*)
integer :: rc
call sort_selection_buffer(b)
rc = f77_zmq_send( zmq_socket_push, b%cur, 4, ZMQ_SNDMORE)
if(rc /= 4) stop "push"
rc = f77_zmq_send( zmq_socket_push, pt2, 8*N_states, ZMQ_SNDMORE)
if(rc /= 8*N_states) stop "push"
rc = f77_zmq_send( zmq_socket_push, b%val(1), 8*b%cur, ZMQ_SNDMORE)
if(rc /= 8*b%cur) stop "push"
rc = f77_zmq_send( zmq_socket_push, b%det(1,1,1), bit_kind*N_int*2*b%cur, ZMQ_SNDMORE)
if(rc /= bit_kind*N_int*2*b%cur) stop "push"
rc = f77_zmq_send( zmq_socket_push, ntask, 4, ZMQ_SNDMORE)
if(rc /= 4) stop "push"
rc = f77_zmq_send( zmq_socket_push, task_id(1), ntask*4, 0)
if(rc /= 4*ntask) stop "push"
! Activate is zmq_socket_push is a REQ
! rc = f77_zmq_recv( zmq_socket_push, task_id(1), ntask*4, 0)
end subroutine
subroutine pull_selection_results(zmq_socket_pull, pt2, val, det, N, task_id, ntask)
use f77_zmq
use selection_types
implicit none
integer(ZMQ_PTR), intent(in) :: zmq_socket_pull
double precision, intent(inout) :: pt2(N_states)
double precision, intent(out) :: val(*)
integer(bit_kind), intent(out) :: det(N_int, 2, *)
integer, intent(out) :: N, ntask, task_id(*)
integer :: rc, rn, i
rc = f77_zmq_recv( zmq_socket_pull, N, 4, 0)
if(rc /= 4) stop "pull"
rc = f77_zmq_recv( zmq_socket_pull, pt2, N_states*8, 0)
if(rc /= 8*N_states) stop "pull"
rc = f77_zmq_recv( zmq_socket_pull, val(1), 8*N, 0)
if(rc /= 8*N) stop "pull"
rc = f77_zmq_recv( zmq_socket_pull, det(1,1,1), bit_kind*N_int*2*N, 0)
if(rc /= bit_kind*N_int*2*N) stop "pull"
rc = f77_zmq_recv( zmq_socket_pull, ntask, 4, 0)
if(rc /= 4) stop "pull"
rc = f77_zmq_recv( zmq_socket_pull, task_id(1), ntask*4, 0)
if(rc /= 4*ntask) stop "pull"
! Activate is zmq_socket_pull is a REP
! rc = f77_zmq_send( zmq_socket_pull, task_id(1), ntask*4, 0)
end subroutine
subroutine select_connected(i_generator,E0,pt2,b)
use f77_zmq
use bitmasks
use selection_types
implicit none
integer, intent(in) :: i_generator
type(selection_buffer), intent(inout) :: b
double precision, intent(inout) :: pt2(N_states)
integer :: k,l
double precision, intent(in) :: E0(N_states)
integer(bit_kind) :: hole_mask(N_int,2), particle_mask(N_int,2)
double precision :: fock_diag_tmp(2,mo_tot_num+1)
call build_fock_tmp(fock_diag_tmp,psi_det_generators(1,1,i_generator),N_int)
do l=1,N_generators_bitmask
do k=1,N_int
hole_mask(k,1) = iand(generators_bitmask(k,1,s_hole,l), psi_det_generators(k,1,i_generator))
hole_mask(k,2) = iand(generators_bitmask(k,2,s_hole,l), psi_det_generators(k,2,i_generator))
particle_mask(k,1) = iand(generators_bitmask(k,1,s_part,l), not(psi_det_generators(k,1,i_generator)) )
particle_mask(k,2) = iand(generators_bitmask(k,2,s_part,l), not(psi_det_generators(k,2,i_generator)) )
hole_mask(k,1) = ior(generators_bitmask(k,1,s_hole,l), generators_bitmask(k,1,s_part,l))
hole_mask(k,2) = ior(generators_bitmask(k,2,s_hole,l), generators_bitmask(k,2,s_part,l))
particle_mask(k,:) = hole_mask(k,:)
enddo
call select_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2,b)
call select_singles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2,b)
enddo
end
subroutine create_selection_buffer(N, siz, res)
use selection_types
implicit none
integer, intent(in) :: N, siz
type(selection_buffer), intent(out) :: res
allocate(res%det(N_int, 2, siz), res%val(siz))
res%val = 0d0
res%det = 0_8
res%N = N
res%mini = 0d0
res%cur = 0
end subroutine
subroutine add_to_selection_buffer(b, det, val)
use selection_types
implicit none
type(selection_buffer), intent(inout) :: b
integer(bit_kind), intent(in) :: det(N_int, 2)
double precision, intent(in) :: val
integer :: i
if(dabs(val) >= b%mini) then
b%cur += 1
b%det(:,:,b%cur) = det(:,:)
b%val(b%cur) = val
if(b%cur == size(b%val)) then
call sort_selection_buffer(b)
end if
end if
end subroutine
subroutine sort_selection_buffer(b)
use selection_types
implicit none
type(selection_buffer), intent(inout) :: b
double precision, allocatable :: vals(:), absval(:)
integer, allocatable :: iorder(:)
integer(bit_kind), allocatable :: detmp(:,:,:)
integer :: i, nmwen
logical, external :: detEq
nmwen = min(b%N, b%cur)
allocate(iorder(b%cur), detmp(N_int, 2, nmwen), absval(b%cur), vals(nmwen))
absval = -dabs(b%val(:b%cur))
do i=1,b%cur
iorder(i) = i
end do
call dsort(absval, iorder, b%cur)
do i=1, nmwen
detmp(:,:,i) = b%det(:,:,iorder(i))
vals(i) = b%val(iorder(i))
end do
b%det(:,:,:nmwen) = detmp(:,:,:)
b%det(:,:,nmwen+1:) = 0_bit_kind
b%val(:nmwen) = vals(:)
b%val(nmwen+1:) = 0d0
b%mini = max(b%mini,dabs(b%val(b%N)))
b%cur = nmwen
end subroutine
subroutine selection_collector(b, pt2)
use f77_zmq
use selection_types
use bitmasks
implicit none
type(selection_buffer), intent(inout) :: b
double precision, intent(out) :: pt2(N_states)
double precision :: pt2_mwen(N_states)
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
integer(ZMQ_PTR), external :: new_zmq_pull_socket
integer(ZMQ_PTR) :: zmq_socket_pull
integer :: msg_size, rc, more
integer :: acc, i, j, robin, N, ntask
double precision, allocatable :: val(:)
integer(bit_kind), allocatable :: det(:,:,:)
integer, allocatable :: task_id(:)
integer :: done
real :: time, time0
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
zmq_socket_pull = new_zmq_pull_socket()
allocate(val(b%N), det(N_int, 2, b%N), task_id(N_det))
done = 0
more = 1
pt2(:) = 0d0
call CPU_TIME(time0)
do while (more == 1)
call pull_selection_results(zmq_socket_pull, pt2_mwen, val(1), det(1,1,1), N, task_id, ntask)
pt2 += pt2_mwen
do i=1, N
call add_to_selection_buffer(b, det(1,1,i), val(i))
end do
do i=1, ntask
if(task_id(i) == 0) then
print *, "Error in collector"
endif
call zmq_delete_task(zmq_to_qp_run_socket,zmq_socket_pull,task_id(i),more)
end do
done += ntask
call CPU_TIME(time)
! print *, "DONE" , done, time - time0
end do
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
call end_zmq_pull_socket(zmq_socket_pull)
call sort_selection_buffer(b)
end subroutine
subroutine select_singles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2,buf)
use f77_zmq
use bitmasks
use selection_types
implicit none
BEGIN_DOC
! Select determinants connected to i_det by H
END_DOC
integer, intent(in) :: i_generator
double precision, intent(in) :: fock_diag_tmp(mo_tot_num)
double precision, intent(inout) :: pt2(N_states)
integer(bit_kind), intent(in) :: hole_mask(N_int,2), particle_mask(N_int,2)
double precision, intent(in) :: E0(N_states)
type(selection_buffer), intent(inout) :: buf
integer :: i,j,k,l
integer :: msg_size
msg_size = bit_kind*N_int*2
! Apply hole and particle masks
! -----------------------------
integer(bit_kind) :: hole(N_int,2), particle(N_int,2)
do k=1,N_int
hole (k,1) = iand(psi_det_generators(k,1,i_generator), hole_mask(k,1))
hole (k,2) = iand(psi_det_generators(k,2,i_generator), hole_mask(k,2))
particle(k,1) = iand(not(psi_det_generators(k,1,i_generator)), particle_mask(k,1))
particle(k,2) = iand(not(psi_det_generators(k,2,i_generator)), particle_mask(k,2))
enddo
! Create lists of holes and particles
! -----------------------------------
integer :: N_holes(2), N_particles(2)
integer :: hole_list(N_int*bit_kind_size,2)
integer :: particle_list(N_int*bit_kind_size,2)
call bitstring_to_list_ab(hole , hole_list , N_holes , N_int)
call bitstring_to_list_ab(particle, particle_list, N_particles, N_int)
! Create excited determinants
! ---------------------------
integer :: ispin, other_spin
integer(bit_kind) :: exc_det(N_int,2), ion_det(N_int,2)
do k=1,N_int
exc_det(k,1) = psi_det_generators(k,1,i_generator)
exc_det(k,2) = psi_det_generators(k,2,i_generator)
ion_det(k,1) = psi_det_generators(k,1,i_generator)
ion_det(k,2) = psi_det_generators(k,2,i_generator)
enddo
integer :: ptr_microlist(0:mo_tot_num * 2 + 1), N_microlist(0:mo_tot_num * 2)
integer, allocatable :: idx_microlist(:)
integer(bit_kind), allocatable :: microlist(:, :, :)
double precision, allocatable :: psi_coef_microlist(:,:)
allocate(microlist(N_int, 2, N_det_selectors * 3), psi_coef_microlist(psi_selectors_size * 3, N_states), idx_microlist(N_det_selectors * 3))
do ispin=1,2
do i=1, N_holes(ispin)
ion_det(:,:) = psi_det_generators(:,:,i_generator)
integer :: i_hole
i_hole = hole_list(i,ispin)
! Apply the hole
integer :: j_hole, k_hole
k_hole = ishft(i_hole-1,-bit_kind_shift)+1 ! N_int
j_hole = i_hole-ishft(k_hole-1,bit_kind_shift)-1 ! bit index
ion_det(k_hole,ispin) = ibclr(ion_det(k_hole,ispin),j_hole)
call create_microlist_single(psi_selectors, i_generator, N_det_selectors, ion_det, microlist, idx_microlist, N_microlist, ptr_microlist, N_int)
do j=1, ptr_microlist(mo_tot_num * 2 + 1) - 1
psi_coef_microlist(j,:) = psi_selectors_coef_transp(:,idx_microlist(j))
enddo
if(ptr_microlist(mo_tot_num * 2 + 1) == 1) then
cycle
endif
do j=1,N_particles(ispin)
exc_det(:,:) = ion_det(:,:)
integer :: i_particle
i_particle = particle_list(j,ispin)
integer :: j_particle, k_particle
k_particle = ishft(i_particle-1,-bit_kind_shift)+1 ! N_int
j_particle = i_particle-ishft(k_particle-1,bit_kind_shift)-1 ! bit index
exc_det(k_particle,ispin) = ibset(exc_det(k_particle,ispin),j_particle)
logical, external :: is_in_wavefunction
logical :: nok
if (.not. is_in_wavefunction(exc_det,N_int)) then
double precision :: i_H_psi_value(N_states), i_H_psi_value2(N_states)
i_H_psi_value = 0d0
i_H_psi_value2 = 0d0
integer :: sporb
nok = .false.
sporb = i_particle + (ispin - 1) * mo_tot_num
if(N_microlist(sporb) > 0) call check_past(exc_det, microlist(1,1,ptr_microlist(sporb)), idx_microlist(ptr_microlist(sporb)), N_microlist(sporb), i_generator, nok, N_int)
if(nok) cycle
if(N_microlist(0) > 0) call i_H_psi(exc_det,microlist,psi_coef_microlist,N_int,N_microlist(0),psi_selectors_size*3,N_states,i_H_psi_value)
if(N_microlist(sporb) > 0) call i_H_psi(exc_det,microlist(1,1,ptr_microlist(sporb)),psi_coef_microlist(ptr_microlist(sporb), 1),N_int,N_microlist(sporb),psi_selectors_size*3,N_states,i_H_psi_value2)
i_H_psi_value(:) = i_H_psi_value(:) + i_H_psi_value2(:)
double precision :: Hii, diag_H_mat_elem_fock
Hii = diag_H_mat_elem_fock(psi_det_generators(1,1,i_generator),exc_det,fock_diag_tmp,N_int)
double precision :: delta_E, e_pert(N_states), e_pertm
e_pert(:) = 0d0
e_pertm = 0d0
do k=1,N_states
if (i_H_psi_value(k) == 0.d0) cycle
delta_E = E0(k) - Hii
if (delta_E < 0.d0) then
e_pert(k) = 0.5d0 * (-dsqrt(delta_E * delta_E + 4.d0 * i_H_psi_value(k) * i_H_psi_value(k)) - delta_E)
else
e_pert(k) = 0.5d0 * ( dsqrt(delta_E * delta_E + 4.d0 * i_H_psi_value(k) * i_H_psi_value(k)) - delta_E)
endif
if(dabs(e_pert(k)) > dabs(e_pertm)) e_pertm = e_pert(k)
pt2(k) += e_pert(k)
enddo
call add_to_selection_buffer(buf, exc_det, e_pertm)
endif
! Reset exc_det
exc_det(k_particle,ispin) = psi_det_generators(k_particle,ispin,i_generator)
enddo ! j
! Reset ion_det
ion_det(k_hole,ispin) = psi_det_generators(k_hole,ispin,i_generator)
enddo ! i
enddo ! ispin
end
subroutine select_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2,buf)
use f77_zmq
use bitmasks
use selection_types
implicit none
BEGIN_DOC
! Select determinants connected to i_det by H
END_DOC
integer, intent(in) :: i_generator
double precision, intent(in) :: fock_diag_tmp(mo_tot_num)
double precision, intent(inout) :: pt2(N_states)
integer(bit_kind), intent(in) :: hole_mask(N_int,2), particle_mask(N_int,2)
double precision, intent(in) :: E0(N_states)
type(selection_buffer), intent(inout) :: buf
logical :: isinwf(mo_tot_num*2, mo_tot_num*2)
double precision :: d0s(mo_tot_num, mo_tot_num, N_states)
integer :: i,j,k,l,j1,j2,i1,i2,ib,jb
integer :: msg_size
msg_size = bit_kind*N_int*2
! Apply hole and particle masks
! -----------------------------
integer(bit_kind) :: hole(N_int,2), particle(N_int,2)
do k=1,N_int
hole (k,1) = iand(psi_det_generators(k,1,i_generator), hole_mask(k,1))
hole (k,2) = iand(psi_det_generators(k,2,i_generator), hole_mask(k,2))
particle(k,1) = iand(not(psi_det_generators(k,1,i_generator)), particle_mask(k,1))
particle(k,2) = iand(not(psi_det_generators(k,2,i_generator)), particle_mask(k,2))
enddo
! Create lists of holes and particles
! -----------------------------------
integer :: N_holes(2), N_particles(2)
integer :: hole_list(N_int*bit_kind_size,2)
integer :: particle_list(N_int*bit_kind_size,2)
call bitstring_to_list_ab(hole , hole_list , N_holes , N_int)
call bitstring_to_list_ab(particle, particle_list, N_particles, N_int)
! Create excited determinants
! ---------------------------
integer :: ispin1, ispin2, other_spin
integer(bit_kind) :: exc_det(N_int,2), ion_det(N_int,2)
integer :: ptr_microlist(0:mo_tot_num * 2 + 1), N_microlist(0:mo_tot_num * 2)
double precision, allocatable :: psi_coef_microlist(:,:)
integer :: ptr_tmicrolist(0:mo_tot_num * 2 + 1), N_tmicrolist(0:mo_tot_num * 2)
double precision, allocatable :: psi_coef_tmicrolist(:,:)
integer, allocatable :: idx_tmicrolist(:), idx_microlist(:)
integer(bit_kind), allocatable :: microlist(:,:,:), tmicrolist(:,:,:)
integer :: ptr_futur_microlist(0:mo_tot_num * 2 + 1), ptr_futur_tmicrolist(0:mo_tot_num * 2 + 1)
integer :: N_futur_microlist(0:mo_tot_num * 2), N_futur_tmicrolist(0:mo_tot_num * 2)
logical :: pastlink
allocate(idx_tmicrolist(N_det_selectors * 3), idx_microlist(N_det_selectors * 4))
allocate(microlist(N_int, 2, N_det_selectors * 4), tmicrolist(N_int, 2, N_det_selectors * 3))
allocate(psi_coef_tmicrolist(psi_selectors_size * 3, N_states), psi_coef_microlist(psi_selectors_size * 4, N_states))
do k=1,N_int
exc_det(k,1) = psi_det_generators(k,1,i_generator)
exc_det(k,2) = psi_det_generators(k,2,i_generator)
ion_det(k,1) = psi_det_generators(k,1,i_generator)
ion_det(k,2) = psi_det_generators(k,2,i_generator)
enddo
do ispin1=1,2
do ispin2=1,ispin1
integer :: i_hole1, i_hole2, j_hole, k_hole
do i1=N_holes(ispin1),1,-1 ! Generate low excitations first
if(ispin1 == ispin2) then
ib = i1+1
else
ib = 1
endif
do i2=N_holes(ispin2),ib,-1 ! Generate low excitations first
ion_det(:,:) = psi_det_generators(:,:,i_generator)
i_hole1 = hole_list(i1,ispin1)
k_hole = ishft(i_hole1-1,-bit_kind_shift)+1 ! N_int
j_hole = i_hole1-ishft(k_hole-1,bit_kind_shift)-1 ! bit index
ion_det(k_hole,ispin1) = ibclr(ion_det(k_hole,ispin1),j_hole)
i_hole2 = hole_list(i2,ispin2)
k_hole = ishft(i_hole2-1,-bit_kind_shift)+1 ! N_int
j_hole = i_hole2-ishft(k_hole-1,bit_kind_shift)-1 ! bit index
ion_det(k_hole,ispin2) = ibclr(ion_det(k_hole,ispin2),j_hole)
call create_microlist_double(psi_selectors, i_generator, N_det_selectors, ion_det, &
microlist, idx_microlist, N_microlist, ptr_microlist, &
tmicrolist, idx_tmicrolist, N_tmicrolist, ptr_tmicrolist, &
isinwf, d0s, N_int)
if(ptr_microlist(mo_tot_num * 2 + 1) == 1 .and. ptr_tmicrolist(mo_tot_num * 2 + 1) == 1) cycle
call finish_isinwf(ion_det, psi_det_sorted(1,1,N_det_selectors+1), N_det - N_det_selectors, isinwf)
call create_futur_ptr(ptr_microlist, idx_microlist, ptr_futur_microlist, N_futur_microlist, i_generator)
call create_futur_ptr(ptr_tmicrolist, idx_tmicrolist, ptr_futur_tmicrolist, N_futur_tmicrolist, i_generator)
do j=1, ptr_microlist(mo_tot_num * 2 + 1) - 1
psi_coef_microlist(j,:) = psi_selectors_coef_transp(:,idx_microlist(j))
enddo
do j=1, ptr_tmicrolist(mo_tot_num * 2 + 1) - 1
psi_coef_tmicrolist(j,:) = psi_selectors_coef_transp(:,idx_tmicrolist(j))
enddo
! Create particles
! ----------------
integer :: i_particle1, i_particle2, k_particle, j_particle
integer :: p1, p2, sporb, lorb
do j1=1,N_particles(ispin1)
i_particle1 = particle_list(j1, ispin1)
p1 = i_particle1 + (ispin1 - 1) * mo_tot_num
if(N_tmicrolist(p1) > 0 .and. idx_tmicrolist(ptr_tmicrolist(p1)) < i_generator) cycle
jb = 1
if(ispin1 == ispin2) jb = j1+1
do j2=jb,N_particles(ispin2)
i_particle2 = particle_list(j2, ispin2)
p2 = i_particle2 + (ispin2 - 1) * mo_tot_num
if(N_tmicrolist(p2) > 0 .and. idx_tmicrolist(ptr_tmicrolist(p2)) < i_generator) cycle
if(isinwf(p1, p2)) cycle
exc_det = ion_det
if(N_microlist(p1) < N_microlist(p2)) then
sporb = p1
lorb = p2
else
sporb = p2
lorb = p1
endif
! Apply the particle
k_particle = ishft(i_particle2-1,-bit_kind_shift)+1 ! N_int
j_particle = i_particle2-ishft(k_particle-1,bit_kind_shift)-1 ! bit index
exc_det(k_particle,ispin2) = ibset(exc_det(k_particle,ispin2),j_particle)
! Apply the particle
k_particle = ishft(i_particle1-1,-bit_kind_shift)+1 ! N_int
j_particle = i_particle1-ishft(k_particle-1,bit_kind_shift)-1 ! bit index
exc_det(k_particle,ispin1) = ibset(exc_det(k_particle,ispin1),j_particle)
logical, external :: is_in_wavefunction
logical :: nok
! Compute perturbative contribution and select determinant
double precision :: i_H_psi_value(N_states), i_H_psi_value2(N_states)
i_H_psi_value = 0d0
i_H_psi_value2 = 0d0
nok = .false.
call check_past_s(exc_det, microlist(1,1,ptr_microlist(sporb)), N_microlist(sporb) - N_futur_microlist(sporb), nok, N_int)
if(nok) cycle
!DET DRIVEN
! if(N_futur_microlist(0) > 0) then
! call i_H_psi(exc_det,microlist(1,1,ptr_futur_microlist(0)),psi_coef_microlist(ptr_futur_microlist(0), 1),N_int,N_futur_microlist(0),psi_selectors_size*4,N_states,i_H_psi_value)
! end if
!INTEGRAL DRIVEN
do j=1, N_states
i_H_psi_value(j) = d0s(mod(p1-1, mo_tot_num)+1, mod(p2-1, mo_tot_num)+1, j)
end do
if(N_futur_microlist(sporb) > 0) then
!!! COMPUTE INTERSECTION
!!!!!!!!!!!!!
! if(dfloat(N_futur_microlist(lorb)) / dfloat(N_futur_microlist(sporb)) < 2d0) then
! c1 = ptr_futur_microlist(p1)
! c2 = ptr_futur_microlist(p2)
! do while(c1 < ptr_microlist(p1+1) .and. c2 < ptr_microlist(p2+1))
! if(idx_microlist(c1) < idx_microlist(c2)) then
! c1 += 1
! else if(idx_microlist(c1) > idx_microlist(c2)) then
! c2 += 1
! else
! call i_H_j(exc_det,microlist(1,1,c1),N_int,hij)
! do j = 1, N_states
! i_H_psi_value2(j) = i_H_psi_value2(j) + psi_coef_microlist(c1,j)*hij
! end do
! c1 += 1
! c2 += 1
! endif
! end do
! else
call i_H_psi(exc_det,microlist(1,1,ptr_futur_microlist(sporb)),psi_coef_microlist(ptr_futur_microlist(sporb), 1),N_int,N_futur_microlist(sporb),psi_selectors_size*4,N_states,i_H_psi_value2)
i_H_psi_value = i_H_psi_value + i_H_psi_value2
end if
if(.false.) then ! DET DRIVEN
integer :: c1, c2
double precision :: hij
c1 = ptr_futur_tmicrolist(p1)
c2 = ptr_futur_tmicrolist(p2)
do while(.true.)
if(c1 >= ptr_tmicrolist(p1+1) .or. c2 >= ptr_tmicrolist(p2+1)) then
if(ptr_tmicrolist(p1+1) /= c1) then
call i_H_psi(exc_det,tmicrolist(1,1,c1),psi_coef_tmicrolist(c1, 1),N_int, ptr_tmicrolist(p1+1)-c1 ,psi_selectors_size*3,N_states,i_H_psi_value2)
i_H_psi_value = i_H_psi_value + i_H_psi_value2
end if
if(ptr_tmicrolist(p2+1) /= c2) then
call i_H_psi(exc_det,tmicrolist(1,1,c2),psi_coef_tmicrolist(c2, 1),N_int, ptr_tmicrolist(p2+1)-c2 ,psi_selectors_size*3,N_states,i_H_psi_value2)
i_H_psi_value = i_H_psi_value + i_H_psi_value2
endif
exit
endif
if(idx_tmicrolist(c1) < idx_tmicrolist(c2)) then
call i_H_j(exc_det,tmicrolist(1,1,c1),N_int,hij)
do j = 1, N_states
i_H_psi_value(j) = i_H_psi_value(j) + psi_coef_tmicrolist(c1,j)*hij
enddo
c1 += 1
else
call i_H_j(exc_det,tmicrolist(1,1,c2),N_int,hij)
do j = 1, N_states
i_H_psi_value(j) = i_H_psi_value(j) + psi_coef_tmicrolist(c2,j)*hij
enddo
if(idx_tmicrolist(c1) == idx_tmicrolist(c2)) c1 = c1 + 1
c2 += 1
end if
enddo
end if
double precision :: Hii, diag_H_mat_elem_fock
Hii = diag_H_mat_elem_fock(psi_det_generators(1,1,i_generator),exc_det,fock_diag_tmp,N_int)
double precision :: delta_E, e_pert(N_states), e_pertm
e_pert(:) = 0d0
e_pertm = 0d0
do k=1,N_states
if (i_H_psi_value(k) == 0.d0) cycle
delta_E = E0(k) - Hii
if (delta_E < 0.d0) then
e_pert(k) = 0.5d0 * (-dsqrt(delta_E * delta_E + 4.d0 * i_H_psi_value(k) * i_H_psi_value(k)) - delta_E)
else
e_pert(k) = 0.5d0 * ( dsqrt(delta_E * delta_E + 4.d0 * i_H_psi_value(k) * i_H_psi_value(k)) - delta_E)
endif
e_pertm += dabs(e_pert(k))
! if(dabs(e_pert(k)) > dabs(e_pertm)) e_pertm = e_pert(k)
pt2(k) += e_pert(k)
enddo
if(dabs(e_pertm) > dabs(buf%mini)) then
call add_to_selection_buffer(buf, exc_det, e_pertm)
end if
enddo
enddo
enddo
enddo
enddo
enddo
end
subroutine create_futur_ptr(ptr_microlist, idx_microlist, ptr_futur_microlist, N_futur_microlist, i_generator)
integer, intent(in) :: ptr_microlist(0:mo_tot_num * 2 + 1), idx_microlist(*), i_generator
integer, intent(out) :: ptr_futur_microlist(0:mo_tot_num * 2 + 1), N_futur_microlist(0:mo_tot_num * 2)
integer :: i, j
N_futur_microlist = 0
do i=0,mo_tot_num*2
ptr_futur_microlist(i) = ptr_microlist(i+1)
do j=ptr_microlist(i), ptr_microlist(i+1) - 1
if(idx_microlist(j) >= i_generator) then
ptr_futur_microlist(i) = j
N_futur_microlist(i) = ptr_microlist(i+1) - j
exit
end if
end do
end do
end subroutine
subroutine create_microlist_single(minilist, i_cur, N_minilist, key_mask, microlist, idx_microlist, N_microlist, ptr_microlist, Nint)
use bitmasks
integer, intent(in) :: Nint, i_cur, N_minilist
integer(bit_kind), intent(in) :: minilist(Nint,2,N_minilist), key_mask(Nint,2)
integer, intent(out) :: N_microlist(0:mo_tot_num*2), ptr_microlist(0:mo_tot_num*2+1), idx_microlist(N_minilist*4)
integer(bit_kind), intent(out) :: microlist(Nint,2,N_minilist*4)
integer :: i,j,k,s,nt,n_element(2)
integer :: list(Nint*bit_kind_size,2), cur_microlist(0:mo_tot_num*2+1)
integer(bit_kind) :: key_mask_neg(Nint,2), mobileMask(Nint,2)
integer :: mo_tot_num_2
mo_tot_num_2 = mo_tot_num+mo_tot_num
do i=1,Nint
key_mask_neg(i,1) = not(key_mask(i,1))
key_mask_neg(i,2) = not(key_mask(i,2))
end do
do i=0,mo_tot_num_2
N_microlist(i) = 0
enddo
do i=1, N_minilist
nt = 0
do j=1,Nint
mobileMask(j,1) = iand(key_mask_neg(j,1), minilist(j,1,i))
mobileMask(j,2) = iand(key_mask_neg(j,2), minilist(j,2,i))
nt += popcnt(mobileMask(j, 1)) + popcnt(mobileMask(j, 2))
end do
if(nt > 3) then !! TOO MANY DIFFERENCES
continue
else if(nt < 3) then
if(i < i_cur) then !!!!!!!!!!!!!!!!!!!!! DESACTIVADO
N_microlist(:) = 0 !!!! PAST LINKED TO EVERYBODY!
ptr_microlist(:) = 1
return
else !! FUTUR LINKED TO EVERYBODY
N_microlist(0) = N_microlist(0) + 1
endif
else
call bitstring_to_list(mobileMask(1,1), list(1,1), n_element(1), Nint)
call bitstring_to_list(mobileMask(1,2), list(1,2), n_element(2), Nint)
do s=1,2
do j=1,n_element(s)
nt = list(j,s) + mo_tot_num * (s-1)
N_microlist(nt) = N_microlist(nt) + 1
end do
end do
endif
end do
ptr_microlist(0) = 1
do i=1,mo_tot_num_2+1
ptr_microlist(i) = ptr_microlist(i-1) + N_microlist(i-1)
end do
do i=0,mo_tot_num_2+1
cur_microlist(i) = ptr_microlist(i)
end do
do i=1, N_minilist
do j=1,Nint
mobileMask(j,1) = iand(key_mask_neg(j,1), minilist(j,1,i))
mobileMask(j,2) = iand(key_mask_neg(j,2), minilist(j,2,i))
end do
call bitstring_to_list(mobileMask(1,1), list(1,1), n_element(1), Nint)
call bitstring_to_list(mobileMask(1,2), list(1,2), n_element(2), Nint)
if(n_element(1) + n_element(2) < 3) then
idx_microlist(cur_microlist(0)) = i
do k=1,Nint
microlist(k,1,cur_microlist(0)) = minilist(k,1,i)
microlist(k,2,cur_microlist(0)) = minilist(k,2,i)
enddo
cur_microlist(0) = cur_microlist(0) + 1
else if(n_element(1) + n_element(2) == 3) then
do s = 1, 2
do j=1,n_element(s)
nt = list(j,s) + mo_tot_num * (s-1)
idx_microlist(cur_microlist(nt)) = i
do k=1,Nint
microlist(k,1,cur_microlist(nt)) = minilist(k,1,i)
microlist(k,2,cur_microlist(nt)) = minilist(k,2,i)
enddo
cur_microlist(nt) = cur_microlist(nt) + 1
end do
end do
end if
end do
end subroutine
subroutine finish_isinwf(key_mask, keys, N_keys, isinwf)
use bitmasks
implicit none
integer(bit_kind), intent(in) :: key_mask(N_int, 2), keys(N_int, 2, N_keys)
integer(bit_kind) :: key_mask_neg(N_int, 2)
integer(bit_kind) :: mobileMask(N_int, 2)
logical,intent(inout) :: isinwf(mo_tot_num*2, mo_tot_num*2)
integer, intent(in) :: N_keys
integer :: i,j,nt,nt2,list(2,2), n_element(2)
logical, external :: detEq
do i=1,N_int
key_mask_neg(i,1) = not(key_mask(i,1))
key_mask_neg(i,2) = not(key_mask(i,2))
end do
do i=1, N_keys
nt = 0
do j=1,N_int
mobileMask(j,1) = iand(key_mask_neg(j,1), keys(j,1,i))
mobileMask(j,2) = iand(key_mask_neg(j,2), keys(j,2,i))
nt += popcnt(mobileMask(j, 1)) + popcnt(mobileMask(j, 2))
end do
if(nt /= 2) cycle
call bitstring_to_list(mobileMask(1,1), list(1,1), n_element(1), N_int)
call bitstring_to_list(mobileMask(1,2), list(1,2), n_element(2), N_int)
if(n_element(1) >= 1) nt = list(1,1)
if(n_element(1) == 2) nt2 = list(2,1)
if(n_element(2) == 2) nt = list(2,2) + mo_tot_num
if(n_element(2) >= 1) nt2 = list(1,2) + mo_tot_num
isinwf(nt, nt2) = .true.
isinwf(nt2, nt) = .true.
end do
end subroutine
subroutine create_microlist_double(minilist, i_cur, N_minilist, key_mask, microlist, idx_microlist, N_microlist, ptr_microlist, &
tmicrolist, idx_tmicrolist, N_tmicrolist, ptr_tmicrolist, &
isinwf, d0s, Nint)
use bitmasks
implicit none
integer, intent(in) :: Nint, i_cur, N_minilist
integer(bit_kind), intent(in) :: minilist(Nint,2,N_minilist), key_mask(Nint,2)
integer, intent(out) :: N_microlist(0:mo_tot_num*2), ptr_microlist(0:mo_tot_num*2+1), idx_microlist(N_minilist*4)
integer(bit_kind), intent(out) :: microlist(Nint,2,N_minilist*4)
integer, intent(out) :: N_tmicrolist(0:mo_tot_num*2), ptr_tmicrolist(0:mo_tot_num*2+1), idx_tmicrolist(N_minilist*4)
integer(bit_kind), intent(out) :: tmicrolist(Nint,2,N_minilist*4)
integer :: i,j,k,s,nt,nt2
integer, allocatable :: n_element(:,:), idx(:), list(:,:,:)
integer :: cur_microlist(0:mo_tot_num*2+1), cur_tmicrolist(0:mo_tot_num*2+1)
integer(bit_kind) :: key_mask_neg(Nint,2), mobileMask(Nint,2), tmp_det(Nint, 2)
integer :: mo_tot_num_2, pwen(4), pweni
logical,intent(out) :: isinwf(mo_tot_num*2, mo_tot_num*2)
double precision, intent(out) :: d0s(mo_tot_num, mo_tot_num, N_states)
double precision :: integ(mo_tot_num, mo_tot_num)
logical :: localbanned(mo_tot_num*2), banned(mo_tot_num*2), banned_pair(mo_tot_num*2, mo_tot_num*2), ok
banned = .false.
banned_pair = .false.
allocate(list(4,2,N_minilist), n_element(2,N_minilist), idx(0:N_minilist))
isinwf = .false.
integ = 0d0
d0s = 0d0
mo_tot_num_2 = mo_tot_num+mo_tot_num
idx(0) = 0
do i=1,Nint
key_mask_neg(i,1) = not(key_mask(i,1))
key_mask_neg(i,2) = not(key_mask(i,2))
end do
do i=0,mo_tot_num_2
N_microlist(i) = 0
N_tmicrolist(i) = 0
enddo
do i=1, N_minilist
nt = 0
do j=1,Nint
mobileMask(j,1) = iand(key_mask_neg(j,1), minilist(j,1,i))
mobileMask(j,2) = iand(key_mask_neg(j,2), minilist(j,2,i))
nt += popcnt(mobileMask(j, 1)) + popcnt(mobileMask(j, 2))
end do
if(nt > 4) cycle !! TOO MANY DIFFERENCES
idx(0) += 1
idx(idx(0)) = i
call bitstring_to_list(mobileMask(1,1), list(1,1,idx(0)), n_element(1, idx(0)), Nint)
call bitstring_to_list(mobileMask(1,2), list(1,2,idx(0)), n_element(2, idx(0)), Nint)
if(nt == 2) then
if(i < i_cur) then
N_microlist(:) = 0
ptr_microlist = 1
N_tmicrolist = 0
ptr_tmicrolist = 1
return
else
N_microlist(0) = N_microlist(0) + 1
endif
else
do s=1,2
do j=1,n_element(s,idx(0))
k = list(j,s,idx(0)) + mo_tot_num * (s-1)
if(nt == 4) N_microlist(k) = N_microlist(k) + 1
if(nt == 3) then
N_tmicrolist(k) = N_tmicrolist(k) + 1
if(idx(i) < i_cur) banned(nt) = .true.
end if
end do
end do
endif
end do
ptr_microlist(0) = 1
ptr_tmicrolist(0) = 1
do i=1,mo_tot_num_2+1
ptr_microlist(i) = ptr_microlist(i-1) + N_microlist(i-1)
ptr_tmicrolist(i) = ptr_tmicrolist(i-1) + N_tmicrolist(i-1)
end do
do i=0,mo_tot_num_2+1
cur_microlist(i) = ptr_microlist(i)
cur_tmicrolist(i) = ptr_tmicrolist(i)
end do
do i=1, idx(0)
if(n_element(1, i) + n_element(2, i) == 2) cycle
pweni = 0
do s = 1, 2
do j=1,n_element(s,i)
nt = list(j,s,i) + mo_tot_num * (s-1)
pweni += 1
pwen(pweni) = nt
if(n_element(1,i) + n_element(2,i) == 4) then
idx_microlist(cur_microlist(nt)) = idx(i)
do k=1,Nint
microlist(k,1,cur_microlist(nt)) = minilist(k,1,idx(i))
microlist(k,2,cur_microlist(nt)) = minilist(k,2,idx(i))
enddo
cur_microlist(nt) = cur_microlist(nt) + 1
else
idx_tmicrolist(cur_tmicrolist(nt)) = idx(i)
do k=1,Nint
tmicrolist(k,1,cur_tmicrolist(nt)) = minilist(k,1,idx(i))
tmicrolist(k,2,cur_tmicrolist(nt)) = minilist(k,2,idx(i))
enddo
cur_tmicrolist(nt) = cur_tmicrolist(nt) + 1
endif
end do
end do
if(idx(i) < i_cur .and. pweni == 4) then
do j=1,4
do k=j+1,4
banned_pair(pwen(j), pwen(k)) = .true.
banned_pair(pwen(k), pwen(j)) = .true.
end do
end do
end if
end do
do i=1, idx(0)
if(n_element(1, i) + n_element(2, i) <= 2) then
idx_microlist(cur_microlist(0)) = idx(i)
do k=1,Nint
microlist(k,1,cur_microlist(0)) = minilist(k,1,idx(i))
microlist(k,2,cur_microlist(0)) = minilist(k,2,idx(i))
enddo
cur_microlist(0) = cur_microlist(0) + 1
if(n_element(1,i) >= 1) nt = list(1,1,i)
if(n_element(1,i) == 2) nt2 = list(2,1,i)
if(n_element(2,i) == 2) nt = list(2,2,i) + mo_tot_num
if(n_element(2,i) >= 1) nt2 = list(1,2,i) + mo_tot_num
isinwf(nt, nt2) = .true.
isinwf(nt2, nt) = .true.
!!!! INTEGRAL DRIVEN
! !!!!!!!!!!!!!!!!!!!!
call get_d0(minilist(1,1,idx(i)), banned, banned_pair, d0s, key_mask, 1+(nt2-1)/mo_tot_num, 1+(nt-1)/mo_tot_num, &
mod(nt2-1, mo_tot_num)+1, mod(nt-1, mo_tot_num)+1, psi_selectors_coef_transp(1,idx(i)))
! do j=1, N_states
! do nt2=1, mo_tot_num
! do nt=1, mo_tot_num
! d0s(nt,nt2,j) = d0s(nt,nt2,j) + (integ(nt,nt2) * psi_selectors_coef(idx(i), j)) !!! SUPPOSE MINILIST = SELECTORS !!!!
! end do
! end do
! end do
else if(.true. .and. n_element(1, i) + n_element(2, i) == 3) then ! INTEGRAL DRIVEN
! -459.6399263191298
pweni = 0
do s = 1, 2
do j=1,n_element(s,i)
nt = list(j,s,i) + mo_tot_num * (s-1)
pweni += 1
pwen(pweni) = nt
end do
end do
call get_d1(minilist(1,1,idx(i)), banned, banned_pair, d0s, key_mask, pwen, psi_selectors_coef_transp(1,idx(i)))
! do k=1, N_states
! do nt2=1, mo_tot_num
! do nt=1, mo_tot_num
! d0s(nt,nt2,k) = d0s(nt,nt2,k) + (integ(nt,nt2) * psi_selectors_coef(idx(i), k)) !!! SUPPOSE MINILIST = SELECTORS !!!!
! end do
! end do
! end do
end if
end do
end subroutine
subroutine get_d1(gen, banned, banned_pair, mat, mask, pwen, coefs)
use bitmasks
implicit none
integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2)
logical, intent(in) :: banned(mo_tot_num*2), banned_pair(mo_tot_num*2, mo_tot_num*2)
integer(bit_kind) :: deth(N_int, 2), det(N_int, 2), i8
double precision, intent(in) :: coefs(N_states)
double precision, intent(inout) :: mat(mo_tot_num, mo_tot_num, N_states)
double precision :: hij, phase, inv, inv2
integer, intent(in) :: pwen(3)
integer :: s(3), p(3), i, j, k, h1, h2, ns(2), sm, mwen, a1, a2, pwens(2), sp, st
integer :: sfix, pfix
integer :: exc(0:2, 2, 2)
logical :: lbanned(mo_tot_num*2)
logical :: ok, mono, ab
integer :: tmp_array(4)
lbanned = banned
!mat = 0d0
pwens = 0
ns = 0
do sp=1,2
do i=1, N_int
ns(sp) += popcnt(gen(i, sp)) - popcnt(mask(i, sp))
i8 = iand(not(gen(i, sp)), mask(i, sp))
if(i8 /= 0_8) then
sfix = sp
pfix = 1+trailz(i8) + bit_kind*8*(i-1)
end if
end do
end do
do i=1,3
s(i) = 1+(pwen(i)-1)/mo_tot_num
p(i) = 1+mod(pwen(i)-1, mo_tot_num)
pwens(s(i)) += 1
end do
do i=1,3
if(s(i) == 1 .and. ns(1) == 0) cycle
if(s(i) == 2 .and. ns(2) == 0) cycle
if(lbanned(pwen(i))) cycle
ab = pwens(s(i)) == 2
if(ns(1) == 1) sm = mod(s(i), 2) + 1
if(ns(1) == 2) sm = 1
if(ns(2) == 2) sm = 2
lbanned(pwen(i)) = .true.
if(ab) then
if(s(mod(i,3)+1) == 2) then
a1 = mod(i, 3) + 1
a2 = mod(i+1, 3) + 1
else
a2 = mod(i,3)+1
a1 = mod(i+1,3)+1
end if
exc(0, :, 1) = 1
exc(0, :, 2) = 1
exc(1, 1, 1) = p(a2)
exc(1, 1, 2) = p(a1)
exc(1, 2, sfix) = pfix
tmp_array = (/0, 0 ,s(i), p(i) /)
call apply_particle(mask, tmp_array, deth, ok, N_int)
do j=1,mo_tot_num
mwen = j + (sm-1)*mo_tot_num
if(lbanned(mwen)) cycle
tmp_array = (/0,0,sm,j/)
call apply_particle(deth, tmp_array, det, ok, N_int)
if(.not. ok) cycle
mono = mwen == pwen(a1) .or. mwen == pwen(a2)
if(mono) then
call i_h_j(gen, det, N_int, hij)
else
exc(1, 2, sm) = j
call get_double_excitation_phase(gen, det, exc, phase, N_int)
if(sfix == 1) hij = integral8(j, pfix, p(a1), p(a2)) * phase
if(sfix == 2) hij = integral8(pfix, j, p(a1), p(a2)) * phase
end if
if(ns(1) == 1) then
do st=1, N_states
if(sm == 2) mat(j, p(i), st) = mat(j, p(i), st) + hij * coefs(st)
if(sm == 1) mat(p(i), j, st) = mat(p(i), j, st) + hij * coefs(st)
end do
else
do st=1, N_states
mat(j, p(i), st) += hij * coefs(st)
mat(p(i), j, st) += hij * coefs(st)
end do
end if
end do
else !! AA / BB
a1 = mod(i,3)+1
a2 = mod(i+1,3)+1
h1 = p(a1)
h2 = p(a2)
inv = 1d0
if(h1 > h2) inv = -1d0
if(pwens(s(i)) == 1) sp = mod(s(i), 2)+1
if(pwens(s(i)) == 3) sp = s(i)
exc(0, :, sp) = 2
exc(0, :, mod(sp, 2)+1) = 0
exc(1, 1, sp) = min(h1, h2)
exc(2, 1, sp) = max(h1, h2)
tmp_array = (/0, 0 ,s(i), p(i) /)
call apply_particle(mask, tmp_array, deth, ok, N_int)
do j=1,mo_tot_num
if(j == pfix) inv = -inv
mwen = j + (sm-1)*mo_tot_num
if(lbanned(mwen)) cycle
call apply_particle(deth, tmp_array, det, ok, N_int)
if(.not. ok) cycle
mono = mwen == pwen(a1) .or. mwen == pwen(a2)
if(mono) then
call i_h_j(gen, det, N_int, hij)
else
exc(1, 2, sfix) = min(j,pfix)
exc(2, 2, sp) = max(j,pfix)
call get_double_excitation_phase(gen, det, exc, phase, N_int)
hij = (integral8(j, pfix, h1, h2) - integral8(pfix,j, h1, h2))*phase*inv
end if
if(ns(1) == 1) then
do st=1, N_states
if(sm == 2) mat(j, p(i), st) = mat(j, p(i), st) + hij * coefs(st)
if(sm == 1) mat(p(i), j, st) = mat(p(i), j, st) + hij * coefs(st)
end do
else
do st=1, N_states
mat(j, p(i), st) += hij * coefs(st)
mat(p(i), j, st) += hij * coefs(st)
end do
end if
end do
end if
end do
end subroutine
subroutine get_d0(gen, banned, banned_pair, mat, mask, s1, s2, h1, h2, coefs)
use bitmasks
implicit none
double precision, intent(inout) :: mat(mo_tot_num, mo_tot_num, N_states)
logical, intent(in) :: banned(mo_tot_num*2), banned_pair(mo_tot_num*2, mo_tot_num*2)
double precision :: mat_mwen(mo_tot_num, mo_tot_num)
double precision, intent(in) :: coefs(N_states)
integer, intent(in) :: h1, h2, s1, s2
integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2)
integer(bit_kind) :: det1(N_int, 2), det2(N_int, 2)
logical :: ok, mono
double precision :: phase, phase2, inv, hij
integer :: p1, p2, hmi, hma, ns1, ns2, st
logical, external :: detEq
integer :: exc(0:2, 2, 2), exc2(0:2,2,2)
integer :: tmp_array(4)
exc = 0
! mat_mwen = integral8(:,:,h1,h2)
!call get_mo_bielec_integrals_ij(h1, h2 ,mo_tot_num,mat_mwen,mo_integrals_map)
ns1 = mo_tot_num*(s1-1)
ns2 = mo_tot_num*(s2-1)
!mat = 0d0
if(s1 == s2) then
hmi = min(h1, h2)
hma = max(h1, h2)
inv = 1d0
if(h1 > h2) inv = -1d0
exc(0, :, s1) = 2
exc(1, 1, s1) = hmi
exc(2, 1, s1) = hma
do p2=1,mo_tot_num
if(banned(p2 + ns2)) cycle
do p1=1,mo_tot_num
if(banned(p1 + ns1)) cycle
if(p1 == p2) cycle
if(banned_pair(p1 + ns1, p2 + ns2)) cycle
tmp_array = (/s1,p1,s2,p2/)
call apply_particle(mask, tmp_array, det2, ok, N_int)
if(.not. ok) cycle
mono = (hmi == p1 .or. hma == p2 .or. hmi == p2 .or. hma == p1)
if(mono) then
call i_h_j(gen, det2, N_int, hij)
do st=1, N_states
mat(p1, p2, st) += hij * coefs(st)
end do
else
exc(1, 2, s1) = min(p1, p2)
exc(2, 2, s2) = max(p2, p1)
call get_double_excitation_phase(gen, det2, exc, phase, N_int)
do st=1, N_states
mat(p1, p2, st) += coefs(st) * inv * (integral8(p1, p2, h1, h2) - integral8(p2, p1, h1, h2)) * phase
end do
end if
end do
end do
else
exc(0, :, 1) = 1
exc(0, :, 2) = 1
if(s1 /= 2) stop "alpha beta inversified"
exc(1, 1, 1) = h2
exc(1, 1, 2) = h1
do p2=1, mo_tot_num
if(banned(p2 + ns2)) cycle
do p1=1, mo_tot_num
if(banned(p1 + ns1)) cycle
if(banned_pair(p1 + ns1, p2 + ns2)) cycle
tmp_array = (/s1,p1,s2,p2/)
call apply_particle(mask, tmp_array, det2, ok, N_int)
if(.not. ok) cycle
mono = (h1 == p1 .or. h2 == p2)
if(mono) then
call i_h_j(gen, det2, N_int, hij)
do st=1, N_states
mat(p1, p2, st) += hij * coefs(st)
end do
else
exc(1, 2, s1) = p1
exc(1, 2, s2) = p2
call get_double_excitation_phase(gen, det2, exc, phase, N_int)
do st=1, N_states
mat(p1, p2, st) += coefs(st) * integral8(p1, p2, h1, h2) * phase
end do
!mat(p1, p2) = integral8(p1, p2, h1, h2) * phase
end if
end do
end do
end if
end subroutine
subroutine apply_particle(det, exc, res, ok, Nint)
use bitmasks
implicit none
integer, intent(in) :: Nint
integer, intent(in) :: exc(4)
integer :: s1, s2, p1, p2
integer(bit_kind),intent(in) :: det(Nint, 2)
integer(bit_kind),intent(out) :: res(Nint, 2)
logical, intent(out) :: ok
integer :: ii, pos
ok = .false.
s1 = exc(1)
p1 = exc(2)
s2 = exc(3)
p2 = exc(4)
res = det
if(p1 /= 0) then
ii = (p1-1)/bit_kind_size + 1
pos = mod(p1-1, 64)!iand(p1-1,bit_kind_size-1)
if(iand(det(ii, s1), ishft(1_bit_kind, pos)) /= 0_8) return
res(ii, s1) = ibset(res(ii, s1), pos)
end if
ii = (p2-1)/bit_kind_size + 1
pos = mod(p2-1, 64)!iand(p2-1,bit_kind_size-1)
if(iand(det(ii, s2), ishft(1_bit_kind, pos)) /= 0_8) return
res(ii, s2) = ibset(res(ii, s2), pos)
ok = .true.
end subroutine
subroutine apply_hole(det, exc, res, ok, Nint)
use bitmasks
implicit none
integer, intent(in) :: Nint
integer, intent(in) :: exc(4)
integer :: s1, s2, p1, p2
integer(bit_kind),intent(in) :: det(Nint, 2)
integer(bit_kind),intent(out) :: res(Nint, 2)
logical, intent(out) :: ok
integer :: ii, pos
ok = .false.
s1 = exc(1)
p1 = exc(2)
s2 = exc(3)
p2 = exc(4)
res = det
if(p1 /= 0) then
ii = (p1-1)/bit_kind_size + 1
pos = mod(p1-1, 64)!iand(p1-1,bit_kind_size-1)
if(iand(det(ii, s1), ishft(1_bit_kind, pos)) == 0_8) return
res(ii, s1) = ibclr(res(ii, s1), pos)
end if
ii = (p2-1)/bit_kind_size + 1
pos = mod(p2-1, 64)!iand(p2-1,bit_kind_size-1)
if(iand(det(ii, s2), ishft(1_bit_kind, pos)) == 0_8) return
res(ii, s2) = ibclr(res(ii, s2), pos)
ok = .true.
end subroutine
subroutine get_double_excitation_phase(det1,det2,exc,phase,Nint)
use bitmasks
implicit none
BEGIN_DOC
! Returns the two excitation operators between two doubly excited determinants and the phase
END_DOC
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: det1(Nint,2)
integer(bit_kind), intent(in) :: det2(Nint,2)
integer, intent(in) :: exc(0:2,2,2)
double precision, intent(out) :: phase
integer :: tz
integer :: l, ispin, idx_hole, idx_particle, ishift
integer :: nperm
integer :: i,j,k,m,n
integer :: high, low
integer :: a,b,c,d
integer(bit_kind) :: hole, particle, tmp
double precision, parameter :: phase_dble(0:1) = (/ 1.d0, -1.d0 /)
ASSERT (Nint > 0)
nperm = 0
do ispin = 1,2
select case (exc(0,1,ispin))
case(0)
cycle
case(1)
low = min(exc(1,1,ispin), exc(1,2,ispin))
high = max(exc(1,1,ispin), exc(1,2,ispin))
ASSERT (low > 0)
j = ishft(low-1,-bit_kind_shift)+1 ! Find integer in array(Nint)
n = iand(low-1,bit_kind_size-1)+1 ! mod(low,bit_kind_size)
ASSERT (high > 0)
k = ishft(high-1,-bit_kind_shift)+1
m = iand(high-1,bit_kind_size-1)+1
if (j==k) then
nperm = nperm + popcnt(iand(det1(j,ispin), &
iand( ibset(0_bit_kind,m-1)-1_bit_kind, &
ibclr(-1_bit_kind,n)+1_bit_kind ) ))
else
nperm = nperm + popcnt(iand(det1(k,ispin), &
ibset(0_bit_kind,m-1)-1_bit_kind))
if (n < bit_kind_size) then
nperm = nperm + popcnt(iand(det1(j,ispin), ibclr(-1_bit_kind,n) +1_bit_kind))
endif
do i=j+1,k-1
nperm = nperm + popcnt(det1(i,ispin))
end do
endif
case (2)
do i=1,2
low = min(exc(i,1,ispin), exc(i,2,ispin))
high = max(exc(i,1,ispin), exc(i,2,ispin))
ASSERT (low > 0)
j = ishft(low-1,-bit_kind_shift)+1 ! Find integer in array(Nint)
n = iand(low-1,bit_kind_size-1)+1 ! mod(low,bit_kind_size)
ASSERT (high > 0)
k = ishft(high-1,-bit_kind_shift)+1
m = iand(high-1,bit_kind_size-1)+1
if (j==k) then
nperm = nperm + popcnt(iand(det1(j,ispin), &
iand( ibset(0_bit_kind,m-1)-1_bit_kind, &
ibclr(-1_bit_kind,n)+1_bit_kind ) ))
else
nperm = nperm + popcnt(iand(det1(k,ispin), &
ibset(0_bit_kind,m-1)-1_bit_kind))
if (n < bit_kind_size) then
nperm = nperm + popcnt(iand(det1(j,ispin), ibclr(-1_bit_kind,n) +1_bit_kind))
endif
do l=j+1,k-1
nperm = nperm + popcnt(det1(l,ispin))
end do
endif
enddo
a = min(exc(1,1,ispin), exc(1,2,ispin))
b = max(exc(1,1,ispin), exc(1,2,ispin))
c = min(exc(2,1,ispin), exc(2,2,ispin))
d = max(exc(2,1,ispin), exc(2,2,ispin))
if (c>a .and. c<b .and. d>b) then
nperm = nperm + 1
endif
exit
end select
enddo
phase = phase_dble(iand(nperm,1))
end
subroutine check_past(det, list, idx, N, cur, ok, Nint)
implicit none
use bitmasks
integer(bit_kind), intent(in) :: det(Nint, 2), list(Nint, 2, N)
integer, intent(in) :: Nint, idx(N), N, cur
logical, intent(out) :: ok
integer :: i,s,ni
ok = .false.
do i=1,N
if(idx(i) >= cur) exit
s = 0
do ni=1,Nint
s += popcnt(xor(det(ni,1), list(ni,1,i))) + popcnt(xor(det(ni,2), list(ni,2,i)))
end do
if(s <= 4) then
ok = .true.
return
end if
end do
end subroutine
subroutine check_past_s(det, list, N, ok, Nint)
implicit none
use bitmasks
integer(bit_kind), intent(in) :: det(Nint, 2), list(Nint, 2, N)
integer, intent(in) :: Nint, N
logical, intent(out) :: ok
integer :: i,s,ni
ok = .false.
do i=1,N
s = 0
do ni=1,Nint
s += popcnt(xor(det(ni,1), list(ni,1,i))) + popcnt(xor(det(ni,2), list(ni,2,i)))
end do
if(s <= 4) then
ok = .true.
return
end if
end do
end subroutine